
 

 

 

ICE:  Information and Content 
Exchange Protocol  

Primer: Introduction and Overview 
 

 

Version 2.0 

 

2004 08 01 
This version  

http://www.icestandard.org/Spec/SPEC-ICE-2.0Primer.pdf 
Latest version  

http://www.icestandard.org/Spec/SPEC-ICE2.0d.pdf 
Previous version  

http://www.icestandard.org/Spec/SPEC-ICE1.1.htm  
 
Editors:  

Jay Brodsky, Tribune Media Services  
Marco Carrer, Oracle Corporation 
Bruce Hunt, Adobe Systems, Inc. 
Dianne Kennedy, IDEAlliance 
Daniel Koger, Independent Consultant 
Richard Martin, Active Data Exchange 
Laird Popkin, Warner Music Group 
Adam Souzis, Independent Consultant 

 
Copyright (c) International Digital Enterprise Alliance, Inc. [IDEAlliance] (1998, 1999, 

2001, 2001, 2003, 2004). All Rights Reserved. 



Publishing Requirements for Industry Standard Metadata 2 

This document and translations of it may be copied and furnished to others, and 
derivative works that comment on or otherwise explain it or assist in its implementation 

may be prepared, copied, published and distributed, in whole or in part, without 
restriction of any kind, provided that the above copyright notice and this paragraph are 

included on all such copies and derivative works. However, this document itself may not 
be modified in any way, such as by removing the copyright notice or references to 

IDEAlliance, except as needed for the purpose of developing IDEAlliance specifications, 
in which case the procedures for copyrights defined in the IDEAlliance Intellectual 

Property Policy document must be followed, or as required to translate it into languages 
other than English. The limited permissions granted above are perpetual and will not be 

revoked by IDEAlliance or its successors or assigns. 
NO WARRANTY, EXPRESSED OR IMPLIED, IS MADE REGARDING THE ACCURACY, ADEQUACY, 
COMPLETENESS, LEGALITY, RELIABILITY OR USEFULNESS OF ANY INFORMATION CONTAINED IN 
THIS DOCUMENT OR IN ANY SPECIFICATION OR OTHER PRODUCT OR SERVICE PRODUCED OR 
SPONSORED BY IDEALLIANCE. THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN AND 
INCLUDED IN ANY SPECIFICATION OR OTHER PRODUCT OR SERVICE OF IDEALLIANCE IS PROVIDED 
ON AN " AS IS" BASIS. IDEALLIANCE DISCLAIMS ALL WARRANTIES OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY ACTUAL OR ASSERTED WARRANTY OF NON-
INFRINGEMENT OF PROPRIETARY RIGHTS, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR 
PURPOSE.NEITHER IDEALLIANCE NOR ITS CONTRIBUTORS SHALL BE HELD LIABLE FOR ANY 
IMPROPER OR INCORRECT USE OF INFORMATION. NEITHER IDEALLIANCE NOR ITS CONTRIBUTORS 
ASSUME ANY RESPONSIBILITY FOR ANYONE'S USE OF INFORMATION PROVIDED BY IDEALLIANCE. 
IN NO EVENT SHALL IDEALLIANCE OR ITS CONTRIBUTORS BE LIABLE TO ANYONE FOR DAMAGES 
OF ANY KIND, INCLUDING BUT NOT LIMITED TO, COMPENSATORY DAMAGES, LOST PROFITS, LOST 
DATA OR ANY FORM OF SPECIAL, INCIDENTAL, INDIRECT, CONSEQUENTIAL OR PUNITIVE DAMAGES 
OF ANY KIND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY, TORT, PRODUCT 
LIABILITY OR OTHERWISE. 

 
IDEAlliance takes no position regarding the validity or scope of any intellectual property 

or other rights that might be claimed to pertain to the implementation or use of the 
technology described in this document or the extent to which any license under such 

rights might or might not be available. IDEAlliance does not represent that it has made 
any effort to identify any such rights. Information on IDEAlliance's procedures with 

respect to rights in IDEAlliance specifications can be found at the IDEAlliance website. 
Copies of claims of rights made available for publication, assurances of licenses to be 

made available, or the result of an attempt made to obtain a general license or permission 
for the use of such proprietary rights by implementers or users of this specification, can 

be obtained from the President of IDEAlliance. 

IDEAlliance requests interested parties to disclose any copyrights, trademarks, service 
marks, patents, patent applications, or other proprietary or intellectual property rights 

which may cover technology that may be required to implement this specification. Please 
address the information to the President of IDEAlliance. 



 

Status of this Document 
This document is an approved IDEAlliance Specification. It represents a significant step 
towards a stable specification suitable for widespread dissemination and implementation. 
It has been reviewed and approved by the ICE Authoring Group of IDEAlliance.   

ICE 2.0 is the first major revision of the ICE Specification.  As such, ICE 2.0 is not a 
compatible update to the ICE 1.0 specification. This update is a response to the 
implementation experience that has been gained over the past four years as well as the 
advancement in technology and W3C Recommendations. It differs from the ICE 1.0 and 
ICE 1.1 specifications in that it is specifically designed to support a Web Services model 
for syndication, has been modularized, incorporates XML Namespaces, and moves from 
an XML DTD to XML Schema.   

As of this publication, the ICE Specification has been organized into a set of documents.  
This is one document in a set of documents (ICE Primer: Introduction and Overview, ICE 
Cookbook, Basic ICE Specification , Full ICE Specification, ICE Schemas and Scripts, 
and Guidelines to Extending the ICE Protocol) intended to jointly replace ICE 1.1. It has 
been developed by the IDEAlliance ICE Authoring Group. New documents may be 
added to this set over time. 

The ICE Authoring Group and IDEAlliance recommend that implementations be updated 
to conform to the new ICE 2.0 Specification. The new specification embraces the latest 
Web technologies and W3C Recommendations.  It provides added functionality that 
greatly enhances the usability of the protocol in a very wide range of syndication 
applications and can provide a substantial foundation for delivering syndication solutions 
in a Web Services environment.  

Abstract 
This document describes the Information and Content Exchange protocol for use by 
content syndicators and their subscribers. The ICE protocol defines the roles and 
responsibilities of Syndicators and Subscribers, defines the format and method of content 
exchange, and provides support for management and control of syndication relationships. 
We expect ICE to be useful in automating content exchange and reuse, both in traditional 
publishing contexts and in business-to-business relationships where the exchange 
eBusiness content must be reliably automated.  



Publishing Requirements for Industry Standard Metadata 

 

2 

Table of Contents 

Status of this Document................................................................................................... i 

Abstract............................................................................................................................ i 

1. Introduction..................................................................................................................... 1 

1.1 ICE Design Goals ..................................................................................................... 1 
1.1.1 ICE 1.0 Design Goals ........................................................................................ 1 
1.1.2 ICE 2.0 Design Goals ........................................................................................ 2 

1.2 How ICE Relates to Other Standards ....................................................................... 3 
1.2.1 XML................................................................................................................... 3 
1.2.1 XML Namespaces.............................................................................................. 3 
1.2.2 XML Schema ..................................................................................................... 3 
1.2.3 RSS .................................................................................................................... 3 
1.2.4 SOAP ................................................................................................................. 4 
1.2.5 WSDL ................................................................................................................ 4 
1.2.6 UDDI.................................................................................................................. 4 
1.2.7 PRISM................................................................................................................ 5 
1.2.8 DOI .................................................................................................................... 5 
1.2.9 XrML ................................................................................................................. 5 
1.2.10 CDF.................................................................................................................. 5 
1.2.11 OSD.................................................................................................................. 6 
1.2.12 P3P ................................................................................................................... 6 
1.2.13 WebDAV ......................................................................................................... 6 
1.2.14 HTTP DRP....................................................................................................... 6 
1.2.14 Atom ................................................................................................................ 7 

1.3 Definitions ................................................................................................................ 7 
1.3.1 Requirement Wording Note ............................................................................... 7 
1.3.2 ICE Semantic Definitions .................................................................................. 7 

1.4 Technical Decisions.................................................................................................. 9 
1.4.1 ICE 2.0 Constraints ............................................................................................ 9 
1.4.2 Defining ICE 2.0 using an XML-Schema........................................................ 10 
1.4.3 Use of SOAP Transport Mechanism................................................................ 10 
1.4.5 Security ............................................................................................................ 11 
1.4.6 Internationalization Issues ............................................................................... 12 
1.4.7 ICE Modularity ................................................................................................ 12 
1.4.8 ICE Simple Datatypes...................................................................................... 12 
1.4.9 ICE Namespaces .............................................................................................. 13 
1.4.10 ICE XSD’s ..................................................................................................... 13 
1.4.10 ICE WSDL Scripts......................................................................................... 13 

1.5 Structure of this Document ..................................................................................... 13 

1.6 ICE Roadmap.......................................................................................................... 14 

1.7 Conventions ............................................................................................................ 14 



Publishing Requirements for Industry Standard Metadata 

 

3 

2. ICE Overview ............................................................................................................... 15 

2.1 Simple ICE Scenarios ............................................................................................. 16 
2.1.2 Parts Scenario................................................................................................... 16 

2.2 Protocol Overview .................................................................................................. 17 
2.2.1 Messages, Requests and Responses ................................................................. 17 
2.2.2 Request/Response model ................................................................................. 17 
2.2.3 Subscriber/Syndicator, Requester/Responder, Sender/Receiver ..................... 17 

2.3 Bindings of ICE ...................................................................................................... 18 
2.3.1 Binding ICE to SOAP Response Message (HTTP:GET) Pattern.......... 18 
2.3.2 Mapping ICE to SOAP .................................................................................... 19 

2.4 ICE Syntax and Format........................................................................................... 20 

2.5 Identifiers ................................................................................................................ 20 
2.5.1 Subscriber and Syndicator Identifiers .............................................................. 21 
2.5.2 Other Identifiers ............................................................................................... 21 

2.6 ICE Simple Datatypes............................................................................................. 23 

2.7 ICE Namespaces ..................................................................................................... 23 

2.8 ICE Message XSD.................................................................................................. 24 

2.9 ICE Delivery XSD.................................................................................................. 24 

2.10 ICE Subscribe XSD .............................................................................................. 25 

2.11 ICE Message Header ............................................................................................ 27 
2.11.1 Message Header Attributes ............................................................................ 27 
2.11.2 Message Header Elements ............................................................................. 28 

2.11.2.1 Sender ..................................................................................................... 28 
2.11.2.2 Receiver .................................................................................................. 28 
2.11.2.3 User-Agent.............................................................................................. 28 

2.12 ICE Status Codes .................................................................................................. 29 
2.12.1 Relationship Between SOAP Faults and ICE Status Codes .......................... 29 
2.12.2 ICE Status Code Format ................................................................................ 30 
2.12.3 Defined Status Codes ..................................................................................... 30 

3. ICE Conformance Levels.............................................................................................. 35 

3.1 ICE Modularity ....................................................................................................... 35 
3.1.1 SOAP Response Message Exchange Pattern (HTTP:GET) Transport .. 36 
3.1.2 Message / Package Delivery ............................................................................ 36 
3.1.3 SOAP Transport............................................................................................... 37 
3.1.4 Subscription Management ............................................................................... 37 
3.1.5 Incremental Updates ........................................................................................ 37 
3.1.6 Delivery Confirmation ..................................................................................... 37 
3.1.7 Logging ............................................................................................................ 37 
3.1.8 Negotiation....................................................................................................... 38 



Publishing Requirements for Industry Standard Metadata 

 

4 

3.2 More about Modularity........................................................................................... 38 

3.3 ICE Levels of Conformance ................................................................................... 38 
3.3.1 Basic ICE ......................................................................................................... 38 
3.3.2 Full ICE............................................................................................................ 39 
3.3.3 Optional ICE Extensions.................................................................................. 40 

 



ICE:  Primer 

1 

1. Introduction 
Reusing and redistributing information and content from one Web site to another is often 
an ad hoc and expensive process. The expense derives from two different types of 
problems:  

• Before successfully sharing and reusing information, both parties need a common 
vocabulary for content. 

• Before successfully transferring any data and managing the relationship, both 
parties need a common messaging protocol and syndication management model.  

Successful content syndication requires solving both halves of this puzzle. Fortunately, 
industry-specific efforts already exist for solving the vocabulary problems. Since 1998, 
many industries have established their own industry-specific XML vocabularies.  A 
listing of industry XML vocabulary efforts can be found at XML.org. 

ICE addresses the second problem of the redistribution and reuse of content by providing 
the solution for successfully transferring data and managing the syndication relationship.. 
Specifically, ICE enables the management and automation for the establishment of 
syndication relationships, data transfer, and results analysis. When combined with an 
industry specific vocabulary, ICE provides a complete solution for syndicating any type 
of information between information providers and their subscribers.  

1.1 ICE Design Goals 
The ICE Authoring Group defined a number of design goals for ICE based on 
requirements analysis and much thought and discussion.  

1.1.1 ICE 1.0 Design Goals 
Some of the most important design goals for ICE 1.0 are included here for reference:  

NOTE: These goals are non normative. They are included 
here because the ICE 1.0 design goals serve as the basis for 
ICE 2.0 as well..  

1. ICE shall be straightforwardly usable over the Internet.  
2. ICE shall support a wide variety of applications and not constrain data formats.  
3. ICE shall conform to a specific XML syntax.  
4. The ICE requirements shall constrain the ICE process to practical and 

implementable mechanisms.  
5. ICE shall be open for future, unknown uses.  



ICE:  Primer 

2 

6. Compactness of representation in ICE is of minimal importance. NOTE: this is a 
statement about low level encoding methodology, e.g., the use of XML in general 
and the particular choice of tag and attribute names in particular.  

7. ICE shall keep protocol and packaging overhead to a minimum. NOTE: this is a 
statement about protocol overhead in the sense of round trips, complexity, and 
other high-level performance effects. It is not a contradiction of the previous 
point. The design of ICE achieves its performance objectives by optimizing the 
high level design of the protocol flow and state management, not by micro 
optimizing the spelling of individual packets. 

1.1.2 ICE 2.0 Design Goals 
The ICE Authoring Group extended these design goals for ICE 2.0 through a formal 
and open requirements process.  Design goals for ICE 2.0 build on the goals for ICE 
1.0.  New goals for ICE 2.0 include: 

1. XML Namespaces: The requirement is to eliminate element collisions by 
moving all ICE-defined elements into one or more ICE namespaces. 

2. XML Schema: Since ICE is a protocol, it requires features such as type 
definitions found in XML Schemas but not supported by XML DTDs. This entails 
ICE DTD transforming to ICE SCHEMA but more than a straightforward 
translation to one that is extensible. 

3. Simplicity of Specification: There shall be a requirement to break ICE into 
modules in a manner that allows for simplicity of implementation and maintains 
interoperability. 

4. ICE and SOAP: ICE 2.0 needs to define the characteristics of the 
communication over SOAP Version 1.2. 

5. Express ICE as a Web service (WSDL): There is a requirement to define the 
end points of the ICE conversation as WSDL, either message-oriented, RPC-
oriented or both, on top of SOAP. 

6. Asynchronous Communication: ICE must be able to support Asynchronous 
Communication for wireless and transient systems. 

7. ICE Subscription Management of non-ICE delivery, FTP and simple 
HTTP:GET Mechanism:  ICE 2.0 shall be able establish a subscription that may 
then be delivered outside the ICE protocol.  E.G. use ICE subscription 
management to control the FTP delivery of files.  ICE 2.0 is designed to handle 
current and future delivery vehicles, and an apparatus needs to be considered to 
allow for such delivery including both in-band and out-of-band delivery transport 
with behavior defined and in-band and out-of-band negotiation transport with 
behavior defined. 



ICE:  Primer 

3 

1.2 How ICE Relates to Other Standards 
Many other standards describe how to transmit data of one form or another between 
systems. This section briefly discusses some of these protocols and describes their 
relationship to ICE.  

1.2.1 XML 
ICE is an application of the Extensible Mark-up Language (XML 1.1). Basic concepts in 
ICE are represented using the element/attribute mark-up model of XML. Note, however, 
that ICE is a protocol, not just a DTD, and so in that way differs fundamentally from 
other pure document applications of XML such as MathML (mathematical formula mark-
up language) and SMIL (Synchronized Multimedia Interchange Language). 

1.2.1 XML Namespaces 
XML Namespaces 1.1 provides a simple method for qualifying element and attribute 
names used in XML documents by associating them with namespaces identified by URI 
references.  XML Namespaces enable us to define a set of unique element names within a 
given context.  Namespaces prevent element collisions and enable computers to 
unequivocally determine exact points of reference.  Such unique addressing is critical to 
reliable messaging between Web Services.  In ICE 2.0, all ICE-defined elements will be 
moved into one or more ICE namespaces to enable ICE to function as a Web service. 

1.2.2 XML Schema 
XML Schema Definition Language 1.1 is a three-part specification from the W3C that 
provides the capability to specify and constrain XML applications. XML Schema 
provides a superset of the specification capabilities of the XML DTD.  Only XML 
Schema enables specification of type that is expected by Web services.  This difference is 
so critical that the SOAP specification specifically states that a SOAP message “MUST 
NOT” contain a DTD.  Since ICE is a protocol, it requires features such as type 
definitions found in XML Schemas but not supported by XML DTDs.  ICE 1.0 was 
specified with an XML DTD.  ICE 2.0 is specified with an XML Schema. 

1.2.3 RSS 
RSS is a simple mechanism for enabling the lightweight distribution of promotional links 
to  content. RSS was designed to be simple to use and inexpensive to implement. RSS has 
proven quite useful for the distribution of free content, but remains limited in its ability to 
enforce business rules in the content syndication environment. Basic ICE is comparable 
in complexity and capabilities to RSS.  Full ICE, on the other hand, was developed by 



ICE:  Primer 

4 

industry content-providers and software vendors to automate the scheduled, reliable, 
secure redistribution of valued content for publishers and for non-commercial content 
providers. 

1.2.4 SOAP 
SOAP (Simple Object Access Protocol) 1.2 is a key enabler of Web Services through 
XML. SOAP enables the exchange of XML messages so that services can easily describe 
their capabilities and allow any other service, application or device on the Internet to 
easily invoke those capabilities. ICE, working with SOAP, adds the mechanisms for the 
management of syndication on the Web. SOAP is being widely used as transport for Web 
services related RPC. ICE 2.0 is designed to layer its communications on SOAP. This 
will enable developers and users to take advantage of their existing communication 
infrastructure and management services while taking advantage of ICE for their content 
distribution applications or content subscription activities.  SOAP V1.2 became a W3C 
Recommendation on June 24, 2003. 

1.2.5 WSDL 
Web Services Definition Language (WSDL) is an XML based description language that 
currently describes RPC based end-points. This is currently being developed by W3C for 
extending RPC to enable messaging-style program end-points. ICE 1.0 has an XML-
based protocol for conversation between client and server. For ICE 2.0, we are defining 
ICE end-points with WSDL (either message-oriented or RPC-based or both). This will 
eliminate the need for ICE client packages. Any WSDL to Java or any other 
programming language based generator will be able to generate ICE client interfaces in 
that programming language. This also enables customer applications to embed ICE 
capabilities within their applications as Web services and their Web services management 
infrastructure can manage their client. WSDL 1.1 is used in this document to define ICE 
end-points for the Full ICE Syndicator and Full ICE Subscriber.  WSDL scripts are not 
required for Basic ICE. 

1.2.6 UDDI 
Internet-based Universal Description, Discovery, and Integration specification (UDDI) is 
a specification for distributed Web-based information registries of Web services.  UDDI 
registries are designed to help users discover these distributed Web services. UDDI 
compatibility will enable subscribers to discover a server that can deliver content to their 
ICE client.  In this sense, compatibility with UDDI can provide a discovery mechanism 
for the Web syndication services. 



ICE:  Primer 

5 

1.2.7 PRISM 
PRISM is the Publishing Requirements for Industry Standard Metadata.  PRISM provides 
an industry-standard metadata vocabulary to describe content assets. This vocabulary can 
work with ICE to automate content reuse and syndication processes, but it is not a 
syndication protocol. PRISM is a discovery mechanism and enables the selection of 
content that will be syndicated using ICE. There is a natural synergy between ICE and 
PRISM. ICE provides the protocol for syndication processes, and PRISM provides a 
description of the resource being syndicated.  IDEAlliance hosts both working groups. 

1.2.8 DOI 
The Digital Object Identifier (DOI®) is a system for identifying intellectual property in 
the digital environment. It provides a framework for managing intellectual content, for 
linking customers with content suppliers, for facilitating electronic commerce, and 
enabling automated copyright management for all types of media.  DOI does not address 
the management of content syndication, rather it provides a unique identifier, that when 
used with a syndication messaging and management protocol (ICE) will enable content 
management and distribution.  ICE 2.0 will enable the use of DOI as a unique content 
identifier. 

1.2.9 XrML 
XrML (Extensible Rights Markup Language) is an XML vocabulary that provides a 
universal method for securely specifying and managing rights and conditions associated 
with all kinds of resources including digital content as well as services..  XrML 
compatibility with ICE is important for specifying and managing rights during the 
process of syndication.  ICE 2.0 is designed such that it is compatible with XrML. 

1.2.10 CDF 
Channel Definition Format (CDF) specifies the operation of push channels. Like ICE, it 
defines a mechanism for scheduling delivery of encapsulated content. ICE builds on 
some of the concepts of CDF, such as delivery schedules. Note that ICE goes well 
beyond what CDF can do; CDF has no notion of explicit subscription relationship 
management, asset management, reliable sequenced package delivery, asset repair 
operations, constraints, etc.  

We expect ICE will be useful for server-to-server syndication to distribute and/or 
aggregate content to/from various push servers, whereas CDF is useful for server to 
browser applications.  



ICE:  Primer 

6 

1.2.11 OSD 
The Open Software Description (OSD) Format automates distribution of software 
packages. OSD focuses on concepts such as package dependencies, OS requirements, 
environmental requirements (such as: how much disk space does a software package 
require), etc. ICE has very little overlap or relationship to OSD.  

We expect ICE to be useful for server to server syndication to distribute and/or aggregate 
content to/from one OSD server to another, whereas OSD continues to be useful for its 
intended domain of distributing and installing software directly to target desktop and 
work group server machines.  

1.2.12 P3P 
Quoting from [P3P-arch]: The Platform for Privacy Preferences (P3P) protocol 
addresses the twin goals of meeting the data privacy expectations of consumers on the 
Web while assuring that the medium remains available and productive for electronic 
commerce. When ICE is being used to share user profile information from one business 
to another, it is the responsibility of the applications on both sides of such a relationship 
to enforce the appropriate privacy policies in accord with the principles described in P3P, 
as well as in accord with any governing laws. ICE is merely the transport mechanism for 
those profiles and is not involved in the enforcement of user profile privacy principles.  

1.2.13 WebDAV 
Quoting from [WebDAV]: WebDAV (Distributed Authoring and Versioning) specifies a 
set of methods, headers, and content types ancillary to HTTP/1.1 for the management of 
resource properties, creation and management of resource collections, name space 
manipulation, and resource locking (collision avoidance).  

WebDAV addresses a collaborative authoring environment and has very little overlap 
with ICE.  

1.2.14 HTTP DRP 
Quoting from [NOTE-DRP]: The HTTP Distribution and Replication protocol was 
designed to efficiently replicate a hierarchical set of files to a large number of clients. No 
assumption is made about the content or type of the files; they are simply files in some 
hierarchical organization.  

DRP focuses on the differential update of information organized as a hierarchy of files. 
As such, it could be used to solve a portion of the data transfer problems addressed by 
ICE, but only for those content syndication situations that are file centric. ICE solves a 



ICE:  Primer 

7 

more general problem of asset exchange, where assets may not necessarily be files in a 
hierarchy. ICE also addresses explicit subscription relationship management, asset 
management, reliable sequenced package delivery, asset repair operations, constraints, 
etc. whereas DRP addresses none of those.  

1.2.14 Atom 
Atom defines a feed format for representing and a protocol for editing Web resources 
such as Weblogs, online journals, Wikis, and similar content. The feed format enables 
provision of a channel of information by representing multiple resources in a single 
document.  The editing protocol enables agents to interact with resources by nominating a 
way of using existing Web standards in a pattern. ICE is a general syndication protocol 
that can apply to any type of content, and provides for subscription management and 
confirmation of delivery. ICE does not address reading and editing of resources. 

1.3 Definitions 
1.3.1 Requirement Wording Note 
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in 
this document are to be interpreted as described in RFC 2119. 

In the HTML version of this specification, those key words are CAPITALIZED BOLD. 
Capitalization is significant; uncapitalized uses of the key words are intended to be 
interpreted in their normal, informal, English language way. Bold face is not significant, 
and is used to aid comprehension, but the bold font is non normative and the absence of a 
bold font MUST NOT be given any semantic interpretation.  

1.3.2 ICE Semantic Definitions 
These definitions are used throughout this document. Readers will most likely not fully 
understand these definitions without also reading through the specification.  
catalog  

A package of subscription offers. A Subscriber pulls a catalog package (by 
convention Syndicators will offer the catalog as a subscription with subscription-
id=”1”) from a Syndicator, and uses the offers within the catalog to initiate the 
ICE subscription protocol.  

collection  
The result of a Subscriber processing all package deliveries in a single 
subscription, that is, the current content of a subscription. This is equivalent to the 
set of all items that a Syndicator would deliver in a full update of a subscription. 



ICE:  Primer 

8 

This is not necessarily every item a Syndicator would transmit over time in a 
given subscription, because of incremental update.  

full update 
A set of all items within a subscription are delivered with each update.  Basic ICE 
only allows for this update method. 

ICE  
Information and Content Exchange.  

incremental update 
A set of only changed items within a subscription are delivered with each update.  
Basic ICE does not allow for this update method.  

ICE/HTTP  
The specific binding of the ICE protocol to the HTTP protocol. 

ICE/SOAP  
The specific binding of the ICE protocol to the SOAP protocol. 

item  
A single delivery instance of an arbitrary data type. For example, if a database 
record were being distributed, each field might be encapsulated as an item. Or, if 
a prospectus consisting of an HTML file and two GIF image files is being 
distributed, each of the files would be an item (within an item group).  

item group 
A delivery instance of one or more items. For example, if a prospectus consisting 
of an HTML file and two GIF image files is being distributed, each of the files 
would be an item within a single item group. 

message  
The abstract concept of an atomic unit of communication. In this specification, the 
term message does not denote any specific protocol structure; rather, it is used to 
denote an abstract communication concept.   

offer 
An abstract representation of content that can be subscribed to along with delivery 
policies. 

package  
A single delivery instance of a group of items. For example, a package is a single 
issue of a parts manual or a single set of headlines. A package is the atomic unit 
of information distribution in ICE.  A package is also used to distribute ICE 
offers. 

package sequence  
An ordered series of packages delivered over time.  

Receiver  
Generic term referring to the target of an ICE request. The term Receiver is used 
when it is possible for either the Subscriber or the Syndicator to be the party 
receiving the request.  

Request  
A message asking for the performance of an operation. Requests in ICE are 
messages carried by the SOAP payload.  

Requester  



ICE:  Primer 

9 

Generic term referring to the initiator of an ICE request.  
Responder  

Generic term referring to the recipient of an ICE request.  
Response  

A message containing the results of an operation. Responses in ICE are messages 
carried by SOAP payloads.  

Sender  
Generic term referring to the originator of an ICE message. The term Sender is 
used when it is possible for either the Subscriber or the Syndicator to be the party 
sending the message 

Subscriber  
One of the two parties in an ICE relationship (the other one being the Syndicator). 
The Subscriber uses ICE to obtain information and content from the Syndicator.  

subscription  
An agreement to deliver a package sequence from a Syndicator to a Subscriber. 
There may be many independent subscriptions between a Syndicator and a 
Subscriber.  

subscription element  
A persistent identifier of all versions of an item or item group in a subscription. 
The subscription element may have many versions over time, and thus may have 
been represented by different items. For example, a company logo is a single 
subscription element that can be updated over time. Every subscription element 
has a unique subscription element ID assigned by the syndicator.  

subscription offer  
A proposed set of parameters for a particular subscription. Within ICE, the term 
subscription offer has a precise meaning directly related to the corresponding 
protocol data structure; do not confuse the usage of the term "offer" in this 
specification with the more generic and abstract concept of offers in the business 
world sense.  

Syndicator  
One of the two parties in an ICE relationship (the other one being the Subscriber). 
The Syndicator uses ICE to send information and content to the Subscriber.  

1.4 Technical Decisions 
The Authoring Group went through several major topics of discussion while designing 
ICE, and some of the decisions reached are of sufficient interest to warrant recording the 
thought processes that led to them.  

1.4.1 ICE 2.0 Constraints 
During the development of ICE 2.0, the ICE Authoring Group once more searched for an 
existing schema and constraint definition language for the content carried by the ICE 
payload that would meet the ICE requirements. For example, XML schema can be used 
to specify the dateTime format.   



ICE:  Primer 

10 

With the writing of ICE 2.0, the ICE Authoring Group feels that:  

• Constraints are a necessary part of a syndication solution.  
• W3C’s XML Schema provides a workable solution to defining constraints for the 

specification 
• In addition, ICE 2.0 provides specific error and status codes for handling 

constraint violation errors.  

With ICE 2.0, XML Schema is used to specify and manage ICE constraints for packaging 
and messaging.  ICE 2.0 does not specify any particular constrain language for the 
content that ICE carries.  Further, the ICE Authoring Group now considers the definition 
of such a content constraint language out of scope for ICE.  Today, other specifications, 
such as PRISM and XrML, own the domain of specifying constraints and/or metadata for 
content carried by ICE. 

Note that a conforming ICE implementation need not implement any constraint 
processing at all such as XML Schema validation.  Constraint processing for ICE is 
entirely a quality of implementation issue. Its presence or absence has no effect 
whatsoever on the interoperability of two ICE implementations, because nothing in the 
protocol state machine flow depends on constraint processing.  

1.4.2 Defining ICE 2.0 using an XML-Schema 
ICE 1.0 used DTD syntax to define the format of the ICE protocol.  While an XML DTD 
was used to define the format for ICE 1.0, XML Schema has been selected for the 
definition format of ICE 2.0.  This selection was made so that ICE could work over 
SOAP and function as a Web service.  SOAP uses XML Schema for its definition and 
specifically disallows specification by XML DTDs for interoperability with SOAP.  

It is important to note that XML Schema is used as the definition format for ICE, but that 
validation against the schema is not strictly required.  In fact there are two places where 
XML Schema validation is implied by ICE 2.0:  

• A Receiver MAY perform validation on incoming ICE messages. 
• A Sender MUST send only valid ICE messages.  

Note, however, that "validation" could in principle be implemented in a variety of ways. 
A Receiver MAY use any alternate representation of ICE syntax, and perform some 
alternate form of validation against that representation, as long as the results are AS-IF 
the governing ICE XML Schema had been used.  

1.4.3 Use of SOAP Transport Mechanism 
Because one of the design goals of ICE 2.0 is to enable ICE as a Web service, the 
capability of ICE to function over SOAP is critical.  ICE 2.0 will remain a transport 



ICE:  Primer 

11 

independent protocol.  However this ICE 2.0 Specification will explicitly discuss binding 
of the generic ICE protocol over the SOAP transport mechanism and term that 
ICE/SOAP.   

For ease of implementation, Basic ICE is restricted to the SOAP Response Message 
Exchange Pattern (HTTP:GET) as a transport mechanism.  In this SOAP pattern an 
HTTP:GET retrieves whatever data is identified by a URI, so where the URI refers to a 
data-producing process, or a script which can be run by such a process, it is this data 
which will be returned, and not the source text of the script or process.   

Full ICE adds the SOAP Request-Response Message Exchange Pattern.  This implies that 
both the Syndicator and Subscriber have request and response capabilities. 

1.4.5 Security 
The ICE protocol (ICE 1.0 and ICE 2.0) deliberately does not address security, because 
the required levels of security can be achieved via existing and emerging Internet/Web 
security mechanisms.  

In the specific case of digital signatures, non repudiation, and similar concepts, two 
things have happened that have steered the Authoring Group away from the notion of 
having digital signatures inside ICE itself:  

• Separate efforts are underway to define digital signing standards for XML 
documents. The ICE Authoring Group felt that duplicating such work within ICE 
was not warranted.  

• Defining digital signing standards for XML documents is quite tricky, and 
requires defining a canonical text representation of the documents (because the 
digital hash functions hash the textual representation of a document, not its 
logical representation). The ICE Authoring Group did not want to define its own, 
possibly conflicting, canonical representation rules to solve this problem.  

Independent of any future XML digital signing standards, ICE implementations can 
achieve necessary security using a variety of methods, including:  

• Encryption can be accomplished at the transport level, e.g., via SSL, PGP, or 
S/MIME.  

• Applications can agree to send digitally signed content as items within the ICE 
protocol, with verification performed at the application level (above ICE).  

• Syndicators and Subscribers can be authenticated using certificates implemented 
at the transport level.  

• Syndicators can offer extended ICE subscriptions where the specific content 
structures to be encrypted as well as the encryption types may be negotiated using 
subscription extension described in Error! Reference source not found. 



ICE:  Primer 

12 

Also, for interoperability, Syndicators and Subscribers need to agree on how they will 
negotiate the security parameters for a given relationship. This may be done inside of ICE 
by using protocol extension. Or it may be done outside of ICE by, for example, an 
agreement to use SSL at a certain level of encryption, or by some other external means.  

1.4.6 Internationalization Issues 
Few internationalization issues occur at the protocol level at which ICE operates, but four 
specific issues are worthy of NOTE:  

1. Support for International Character Sets. ICE relies on capabilities in XML 
for encoding and supporting international character sets.  

2. Other Protocol Text Strings. The ICE protocol sometimes uses string values as 
semantic identifiers. For example, a <sender name= encodes the sender’s name 
as a textual string. These textual strings are intended as arbitrary tokens 
representing a specific concept; they are not intended for presentation and thus 
have no impact on internationalization issues.  

3. Language identifier for textual data. Some ICE elements are specifically 
designed for the transport of textual data intended for use by humans (defined as 
textType). For example, text is expected in the <icesub:text> element of 
<icesub:business-term element or in the <icedel:description of an item. 
ICE provides a xml:lang attribute in all places where human readable text is 
being transported and might require an identification of its specific language 
encoding. When used, the xml:lang attribute MUST be filled in according to 
standards RFC-1766 (Tags for the Identification of Languages) and ISO-639 
(Code for the representation of names of languages) as is required by the XML 
Specification.  

1.4.7 ICE Modularity 
One of the early design goals for ICE 2.0 was the requirement to provide modularity for 
ICE.  Modularity will, in effect, enable users of the ICE specification to select certain 
modules for implementation and leave others unimplemented.  Modularity will also 
enable ICE to interoperate with other specifications, such as SOAP and Web services 
specifications, in a seamless fashion ICE modularity is documented in more detail in 3.1 
ICE Modularity. 

1.4.8 ICE Simple Datatypes 
In order to specify simple datatypes used in ICE 2.0, a simple datatypes schema was 
developed for inclusion in each of the ICE schema definitions.  This is discussed in more 
detail in 



ICE:  Primer 

13 

2.6 ICE Simple Datatypes and is found in its entirety in ICE: Scripts and Schemas. 

1.4.9 ICE Namespaces 
In order to enable interoperability in the Web services environment, ICE 2.0 uses unique 
namespaces to support ICE messaging, ICE subscription and ICE delivery.   This is 
discussed in more detail in 2.7 ICE Namespaces. 

1.4.10 ICE XSD’s 
ICE XML Schemas can be found on the ICE Standard website.   
http://www.icestandard.org/Spec/V20/schema/icesimpledatatypes20040801.xsd 
http://www.icestandard.org/Spec/V20/schema/ice-message20040801d 
http://www.icestandard.org/Spec/V20/schema/ice-subscribe20040801d 
http://www.icestandard.org/Spec/V20/schema/ice-delivery20040801d 

1.4.10 ICE WSDL Scripts 
In addition to the schema definitions for ICE 2.0, sample WSDL1.2 scripts are provided 
to help define ICE as a Web service.  The ICE 2.0 Specification provides the following 
WSDL scripts that define operations and bindings for Full ICE: 
http://www.icestandard.org/Spec/V20/wsdl/ice-subscriber-

full20040801.wsdl 

http://www.icestandard.org/Spec/v20/wsdl/ice-syndicator-
full20040801.wsdl 

The WSDL scripts provided in this specification are non-normative but are provided for 
reference.  These scripts are WSDL 1.2 compliant.  WSDL 2.0 is currently a Working 
Draft of the W3C.  As such, the WSDL scripts provided within this specification may 
need to be updated when WSDL 2.0 becomes a W3C Recommendation. 

Note:  WSDL scripts are not required for Basic ICE, which 
does not require a Web Services architecture. 

1.5 Structure of this Document 
The remainder of this document is organized as follows:  

• Chapter 2 provides an overview of the ICE protocol.  In this chapter the basic 
roles of the syndicator/subscriber and request/response are discussed.  The use of 
XML Namespaces, and overview of the XML schemas, the XML syntax for ICE 
elements and attributes, the types of identifiers and status codes are discussed. 

• Chapter 3 introduces ICE levels of capability.  In this section the modules of the 
ICE specification are introduced.  The ICE features that must be supported by a 



ICE:  Primer 

14 

Basic ICE implementation, a Full ICE implementation, and ICE extension 
mechanisms are presented.   

1.6 ICE Roadmap 
As of this publication, the ICE Specification has been organized into a set of documents.  
This ICE Primer: Introduction and Overview is one document in a set of documents that 
make up ICE 2.0.  Other documents in the set include: 
(,, Full ICE Specification, ICE Schemas and Scripts, and Guidelines to Extending the ICE 
Protocol) intended to jointly replace ICE 1.1. 

• ICE 2.0: Primer provides an introduction and overview of ICE 2.0.  It describes 
the design rationale and defines the levels of an ICE implementation. 

• ICE 2.0: Cookbook provides developers with implementation recipes for 
increasing levels of ICE functionality. 

• ICE 2.0: Basic ICE Specification describes a basic ICE implementation. This 
section provides a detailed description of basic protocol operations. 

• ICE 2.0: Full ICE Specification describes a full ICE implementation. This section 
provides a detailed description of complete protocol operations. 

• ICE 2.0: ICE Schemas and Scripts contains the four ICE XML schemas and two 
sample WSDL Scripts 

• ICE 2.0: Guidelines to Extending the ICE Protocol describes how to extend the 
ICE protocol.  This section provides details about how XML Namespaces can be 
used to extend the ICE protocol. 

1.7 Conventions 
This document contains a number of constructs that are identified: 

• Examples (XML instance files) 
• XML schema fragments 
• Figures 

In addition, as specific ICE tags are documented, they will be set in a typewriter face with 
an open bracket, but no closing bracket.  Namespace designations will be used.  For 
example <icesub:get-package would be used when discussing the get package 
element. 



ICE:  Primer 

15 

2. ICE Overview 
Two entities are involved in forming a business relationship where ICE is used. The 
Syndicator produces content that is consumed by Subscribers. The Syndicator produces a 
subscription offer from input from various departments in an organization. Decisions are 
made about how to make these goods available to prospects. The subscription offer 
includes terms such as delivery policy, usage reporting, presentation constraints, etc. An 
organization's sales team engages prospects and reaches a business agreement typically 
involving legal or contract departments. Once the legal and contractual discussions are 
concluded, the technical team is provided with the subscription offer details and 
information regarding the Subscriber. The subscription offer is expressed in terms that a 
web application can manage (this could be database records, an XML file, a plain text 
file, and so on). In addition, the technical team may have to set up an account for the 
subscriber entity, so that the website can identify who it is accessing the syndication 
application.  

The Subscriber receives the information regarding their account, their subscriber 
identification and the syndicator endpoint.  At this point, actual ICE operations can begin. 
The important point to understand is that ICE starts after the two parties have already 
agreed to have a relationship, and have already worked out the contractual, monetary, and 
business implications of that relationship.  

The ICE protocol covers three general types of operations:  

• Messaging 
• Delivery / Transport / Packaging 
• Subscription 

From the ICE perspective, a relationship between a Syndicator and a Subscriber starts off 
with some form of subscription establishment. In ICE, the Subscriber typically begins by 
obtaining offers from the Syndicator. The Subscriber then subscribes to particular offers 
with specified delivery transports, protocols and schedules and the Syndicator 
acknowledges the subscription.  

The relationship then moves on to the steady state, where the primary message exchanges 
center on transport, messages and data delivery. ICE uses a package concept as a 
container mechanism for generic data items. ICE defines a sequenced package model 
allowing Syndicators to support both incremental and full update models. Basic ICE is 
limited to the full update model.  Full ICE implementations must support either update 
model.  ICE also defines push and pull data transfer models as well as out-of-band 
transfer.  

Managing exceptional conditions and being able to diagnose problems is an important 
part of syndication management; accordingly, ICE defines a mechanism by which faults 



ICE:  Primer 

16 

can be exchanged in a standardized manner between (consenting) Subscribers and 
Syndicators.  

Finally, ICE provides a number of mechanisms for supporting miscellaneous operations, 
such as the ability the ability to query and ascertain the status of the subscription. 

2.1 Simple ICE Scenarios 
Two simple scenarios are used throughout this specification as the source for examples: 
syndication of news headlines from an online publisher to other online services, and 
syndication of a parts catalog from a manufacturer to its distributors. 2.1.1 Headline 
Scenario 
An online content provider, Headlines.com, allows other online sites to subscribe to their 
headline service. Headlines.com updates headlines three times a day during weekdays, 
and once each on Saturday and Sunday. A headline consists of four fields: the headline 
text, a small thumbnail GIF image, a date, and a URL link that points back to the main 
story on Headlines.com.  

Subscribers who sign up for the headline service can collect these headlines and use them 
on their own site. They display the headlines on their own site, with the URL links 
pointing back to Headlines.com.  

For an extra fee, subscribers may harvest the actual story bodies from Headlines.com and 
thus incorporate content directly into their own site instead of linking back to 
Headlines.com.  

2.1.2 Parts Scenario 
A jet powered pencil sharpener manufacturer, JetSharp.com, wants to keep its distributors 
up to date with the latest parts and optional accessories catalog at all times. It is very 
important to JetSharp that its distributors always have easy access to the latest service 
bulletins, and also that they have the latest information about optional accessories and the 
corresponding price lists.  

Each item in the JetSharp parts catalog consists of some structured data, such as price, 
shipping weight, and size, and also contains unstructured data consisting of a set of 
HTML files and GIF images describing the product.  

The JetSharp catalog is huge, but, fortunately, changes fairly slowly over time.  



ICE:  Primer 

17 

2.2 Protocol Overview 
The ICE protocol is primarily a request/response protocol that allows for fully symmetric 
implementations, where both the Syndicator and Subscriber can initiate requests. This 
fully symmetric implementation is known as Full ICE.  The ICE protocol also allows for 
a Basic ICE implementation where only the Subscriber can initiate requests (i.e., no agent 
that would be considered a "server" resides on the Subscriber machine).  

There are several key concepts that form the foundation of the ICE protocol. 

2.2.1 Messages, Requests and Responses 
ICE uses message exchange as its fundamental protocol model, where a message is 
defined for the purposes of this specification to be a SOAP payload as specified by the 
ICE 2.0 Specification.).  

ICE messages contain header information along with requests and responses. A request 
asks for the performance of an operation. For example, when a Subscriber wishes to 
initiate a relationship by obtaining a catalog of offers from a Syndicator, the Subscriber 
sends the Syndicator a message containing a <get-package request with a subscription 
id equal to “1” where “1” is by default the request for the Syndicator’s package of offers. 
Similarly, in this case the response contains the results of the operation and returns a 
package of offers.  

2.2.2 Request/Response model 
Every logical operation in ICE is described by a request/response pair. All operations are 
forced to fit this model; thus, a valid ICE protocol session always comprises an even 
number of messages when it is in the idle state (i.e., there is a matching response for 
every request).  

2.2.3 Subscriber/Syndicator, 
Requester/Responder, Sender/Receiver 
The Subscriber and Syndicator assume several different roles during ICE protocol 
operations: Subscriber versus Syndicator, Requester versus Responder, and Sender versus 
Receiver.  

The definition of Subscriber and Syndicator is based on the business relationships: the 
Syndicator distributes content to the Subscriber. These terms are capitalized throughout 
this specification wherever they refer specifically to the roles of the parties in an ICE 
relationship, as opposed to the general concepts of subscribing and syndicating.  



ICE:  Primer 

18 

The definition of Requester/Responder is based on who initiates the ICE operation. The 
initiator is the Requester, and the other party, who performs the operation, is the 
Responder. It is possible for a Syndicator to be either a Requester or a Responder, 
depending on the particular operation. The same is true for a Subscriber. For example, 
when a Subscriber initiates a <icedel:get-package request to a Syndicator, the 
Subscriber is the Requester. When a Syndicator pushes a <icedel:package request to a 
Subscriber, the Syndicator becomes the Requester and waits for a <icedel:package-
confirmation response from the Subscriber, who in this instance is also 
the Responder. 

Finally, the concept of Sender and Receiver are used in this specification to describe the 
relationship with respect to the transmission of a single message. A message travels from 
Sender to Receiver (and this thus forms the definition of Sender and Receiver).  

Note that an ICE operation inherently consists of a Request/Response pair. Thus, the 
Requester starts out being a Sender, sending a message, containing a request, to the 
Receiver. The request could be a SOAP message or a simple HTTP:GET.  The Receiver of 
this first message becomes the Responder. When the Responder has performed the 
operation and wishes to return the results, the Responder becomes the Sender of a 
message containing the response, and the initial Requester is now the Receiver.  

2.3 Bindings of ICE 
Because one of the design goals of ICE 2.0 is to enable ICE as a Web service, the 
capability of ICE to function over SOAP is critical.  While ICE 2.0 will remain a 
transport independent protocol, thus the ICE 2.0 Specification will explicitly discuss 
binding of the generic ICE protocol over the SOAP transport mechanism and term that 
ICE/SOAP.  In addition to the specification of ICE 2.0 with an explicit binding to SOAP, 
ease of implementation also dictates that ICE 2.0 also enable the use of HTTP:GET 
ICE/HTTP as a transport mechanism.  The bindings for ICE 2.0 are spelled out in the 
WSDL scripts. 

2.3.1 Binding ICE to SOAP Response Message 
(HTTP:GET) Pattern 
In Basic ICE all messages are initiated with a SOAP Response Message Pattern 
(HTTP:GET).  The HTTP:GET retrieves whatever data is identified by a URL.  The body of 
the response will be an XML message with a SOAP envelope and ICE messages as 
defined by the ICE 2.0 Specification. 



ICE:  Primer 

19 

2.3.2 Mapping ICE to SOAP 
For Full ICE, an explicit binding to SOAP is provided.  This binding can be found in the 
following (partial) WSDL script: 

<binding name="ice-syndicator-full-binding" type="tns:ice-
syndicator-full-portType"/> 

ICE 2.0 was specifically designed to function as a Web service and to take advantage of 
SOAP as a messaging protocol.  The ICE message header was designed to be carried 

in the SOAP header and the ICE fault, delivery and subscription mechanisms were 
designed to be enclosed in the SOAP body. 

ICE uses XML as the format for its message header, delivery and subscription elements. 
All ICE message elements MUST be formatted in accordance with the XML 1.1 
specification. Furthermore, ICE message elements MUST be well formed and MUST be 
valid according to the ICE XML Schema Definitions.  
This document does not repeat the general rules for proper XML encoding; readers are 

expected to refer to the XML specification. 

To understand how ICE works with SOAP, see Figure 2.1. 

 
Figure 2.1.  ICE carried by SOAP 



ICE:  Primer 

20 

For either Full ICE or Basic ICE, content is encoded in an ICE/SOAP format.  This is 
simply an XML file where ICE messages are wrapped in a SOAP envelope..  

<?xml version="1.0" ?> 
<env:Envelope xmlns:env='http://www.w3.org/2002/12/soap-
envelope'> 
  <env:Header> 
<icemes:Header  
xmlns:icemes=’http://icestandard.org/ICE/Spec/V20/message’ 
timestamp=”2003-03-03” message-id=”m0056”> 
  <icemes:Sender name=”mycompany” 
role=”http://icestandard.org/ice/2.0/role/syndicator”  
   sender-id=”http://www.xxyz.org”/> 
  </ice:Header> 
  </env:Header> 
  <env:Body> 
<icedel:package 
xmlns:icemes=’http://icestandard.org/ICE/Spec/V20/delivery’  
 new-state=”P3” old-state=”P2” 
  fullupdate=”false”  package-id=”012” subscription-id=”3”> 
   <icedel:add subscription-element=”offer3”> 
 <icedel:item-refurl=”http://mysite.com/text.htm”/> 
</icedel:add> 
</icedel:package> 
  </env:Body><env:Envelope> 

2.4 ICE Syntax and Format 
ICE 2.0 uses XML as the format for all ICE messages.  XML schemas are used to define 
simple datatypes, the ICE message header and status codes and ICE delivery and 
subscription elements. 
ICE makes extensive use of XML attributes for representing values. The following 
requirements apply to the interpretation of attribute values:  

• Unless explicitly indicated otherwise, leading and trailing white space characters 
in attribute values MUST be ignored. For example, the following two attribute 
values are equivalent:  

"equivalent" 
" equivalent " 

• All attribute values must conform to simple datatyping rules as expressed in the 
ICE Simple Datatypes Schema.  

2.5 Identifiers 
ICE defines a number of identifiers that control the access to content and enable content 
management throughout the syndication process.  



ICE:  Primer 

21 

2.5.1 Subscriber and Syndicator Identifiers 
ICE uses globally unique identifiers for identifying Subscribers and Syndicators. The 
globally unique identifier for the Subscriber and Syndicator should conform to the 
Universal Unique Identifier defined by the Open Group [OG-UUID]. Note that if a given 
installation sometimes functions as a Subscriber and sometimes functions as a Syndicator 
then it MAY use the same UUID as its identification in both roles.  Although not 
recommended, an ICE implementation may use a unique identifier not based on the open 
group standard, such as email addresses or domain names.  Once the identifier has been 
generated, it must be treated as opaque by all parties. 

The UUID format as specified consists of 32 hexadecimal digits, with optional embedded 
hyphen characters. Per the requirements in the Universal Unique Identifier specification, 
ICE implementations using the UUID MUST ignore all hyphens when comparing UUID 
values for equality, regardless of where the hyphens occur. Also, note that comparisons 
MUST be case insensitive. 

2.5.2 Other Identifiers 
As distinct from the Subscriber UUID and the Syndicator UUID as outlined by the Open 
Group, ICE does not define the format of other identifiers it specifies except for 
uniqueness constraints. All other identifiers function as being unique only within a 
certain scope. For example, a subscription identifier is generated by a Syndicator when 
the relationship between a Subscriber and a Syndicator is first established. The 
identification string used for the subscription ID need only be unique within the domain 
of all subscription identifiers generated by that Syndicator for the Subscriber.  

The following table describes each identifier in ICE, its scope, a description of where in 
an ICE message the ID value is assigned, the role of the party that assigns the ID value, 
where this ID value is referenced, and finally, the section in the specification where the 
identifier is discussed.  



ICE:  Primer 

22 

 

Identifier Scope Where assigned Assigned by ID Referenced by 

Syndicator's 
Unique 
Identifier 

Unique identifier 
of a Syndicator 

When ICE 
syndicator 
created 

Entity wishing to 
use ICE to 
syndicate 
content.  

sender-id attribute on 
<sender element or 
receiver-id attribute on 
<receiver element 
(depending on role) 

Subscriber’s 
Unique 
Identifier 

Unique identifier 
of a Subscriber 

When ICE 
subscriber 
created 

Entity wishing to 
use ICE to 
subscribe to 
content 

sender-id attribute on 
<sender element or 
receiver-id attribute on 
<receiver element 
(depending on role) 

Message ID 

Unique across all 
messages from a 
sender to a 
receiver 

message-id 
attribute on 
message 
<header element 

Sender assigns  
message-id attribute on 
message <header 
element 

Offer ID 

Unique within the 
catalog of offers 
made by a 
Syndicator to a 
Subscriber. 

offer-id attribute 
on <offer element

Syndicator 
assigns. 

offer-id attribute on 
<offer element 

Package ID 
Unique across all 
packages within 
a subscription 

package-id 
attribute on 
<package 
element 

Syndicator 
assigns 

package-id attribute on 
<package and 
<confirmation 
elements 

Subscription 
ID 

Unique across 
subscriptions 
from a Syndicator 
to a Subscriber 

subscription-id 
attribute on 
<subscription 
element 

Syndicator 
assigns 

subscription-id attribute 
on <cancel, <get-
package, <get-status, 
<confirmation, 
<cancellation, 
<subscription, <offer, 
<package, elements  

Subscription 
Element ID 

Unique within a 
subscription 

subscription-
element-id 
attribute on 
<group, <add, 
<remove-item  
element 

Syndicator 
assigns 

subscription-element-id 
attribute on <group, 
<add, <remove-
item element 

Many attributes in ICE contain as values the identifiers described in the previous table  
and use them to track and signal specific states in the syndication relationship.  



ICE:  Primer 

23 

2.6 ICE Simple Datatypes 
One important reason for migrating from the ICE 1.0 XML DTD to the ICE 2.0 XML 
Data Schema is to benefit from the ability to specify simple datatypes that XSD offers.  
ICE simple datatypes are defined in an ICE simple datatypes schema.  Datatypes for 
elements and attributes within ICE are specified here.  The following shows an example 
of the datatype definitions for “dateTime” and “time”.  Note that each simple datatype is 
documented to explain the intended usage. 

<xs:simpleType name = "dateTime"> 
 <xs:annotation> 
  <xs:documentation>the pattern here expresses the 
restriction that datetimes in ICE must be in the UTC time 
zone</xs:documentation> 
</xs:annotation> 
  <xs:restriction base = "dateTime"> 
<xs:pattern value = ".*Z"/> 
  </xs:restriction> 
</xs:simpleType> 
<xs:simpleType name = "time"> 
  <xs:annotation> 
<xs:documentation>the pattern here expresses the 
restriction that times in ICE must be in the UTC time 
zone</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base = "time"> 
<xs:pattern value = ".*Z"/> 
  </xs:restriction> 
</xs:simpleType> 

This document does not repeat the general rules for XML datatyping; readers are 
expected to refer to the XSD specification to understand the datatypes utilized by ICE. 

2.7 ICE Namespaces 
XML namespaces provide a simple method for qualifying element and attribute names 
used in XML documents by associating them with namespaces identified by URI 
references.  XML Namespaces enable us to define a set of unique element names within a 
given context.  Namespaces prevent element collisions and enable computers to 
unequivocally determine exact points of reference.  Such unique addressing is critical to 
reliable messaging between Web services.  In ICE 2.0, all ICE-defined elements are 
moved into one of three ICE namespaces to enable ICE to function as a Web service and 
utilize SOAP messaging. 
The ICE 2.0 namespaces are: 
� xmlns:icemes = “ http://icestandard.org/ICE/Spec/V20/message” 
� xmlns:icedel = “http://icestandard.org/ICE/V20/delivery” 
� xmlns:icesub = “http://icestandard.org/ICE/V20/subscribe” 
� xmlns:icesdt = “http://icestandard.org/ICE/V20/simpledatatypes” 



ICE:  Primer 

24 

NOTE:  The namespace definition is not a URL that can be 
directly resolved.  Rather it is simple an identifier for the 
namespace.  The prefixes used in this specification are 
examples.  Anyone is free to assign their own namespace 
prefixes.  Implementers should honor the namespace 
declarations rather than matching the prefix strings used 
here. 

2.8 ICE Message XSD 
The ICE message schema is defined within ice-message.xsd as the “icemes” namespace.  
This schema defines structures relating to the ICE message itself.  This includes message 
header information and ICE status codes.  In ICE 1.0, before SOAP, ICE had its own 
envelope and the ICE message header fell within the ICE envelope.  Today, however, 
ICE uses the SOAP envelope and SOAP header.  The ICE message is carried within the 
SOAP header. 
The ICE message schema contains header information that is specific to syndication.  In 
addition, it contains definitions for <icemsg:ping, <icemsg:ok and <icemsg:status-
code diagnostic messages.  See Figure 2.2. 

 
Figure 2.2.  ICE message XSD 

The ICE message uses the simple datatypes defined within the simple datatype module.  
For example, the timestamp uses the “dateTime” datatype that was discussed previously. 

Note:  The ICE message schema also contains definitions 
for ICE status codes.  See 2.12 ICE Status Codes. 

2.9 ICE Delivery XSD 

ICE delivery is defined in a schema module with the icedel: namespace.  This module 



ICE:  Primer 

25 

defines the elements that support the delivery of syndicated content and is carried within 
the SOAP body.  See Figure 2.3. 

 
Figure 2.3.  ICE delivery elements 

ICE delivery is most often made up of packages.  Packages may directly contain content 
from another XML namespace, indicated by #wildcard or <icedel:packages.  Two 
kinds of ICE packages include those bearing or point to content and those containing a 
catalog of subscription offers.  ICE delivery also provides for the <icedel:get-
packages request and a <icedel:package-confirmations function. 

2.10 ICE Subscribe XSD 

The ICE subscription module is used to establish and cancel subscriptions for syndicated 
content.  It is defined within the icesub: namespace.  See Figure 2.4. 



ICE:  Primer 

26 

 
Figure 2.4.  ICE subscription elements 

Each ICE subscription contains one offer that will be subscribed to.  Attributes on the 
offer identify it uniquely.  Each ICE subscription offer must contain a delivery policy.  
The delivery rule within the delivery policy defines how and when content will be 
delivered.  See Figure 2.5. 

Figure 2.5. ICE Delivery Policy and Delivery Rule Structures 

In addition, the ICE subscription allows for the subscriber to cancel a subscription, for the 
syndicator to verify cancellation and for the subscriber to get the status of a subscription.  
See Figure 2.6. 



ICE:  Primer 

27 

 
Figure 2.6.  ICE Subscription Management Elements 

2.11 ICE Message Header 
The <icemes:header contains header information that fits inside the SOAP header and 
specifies information specific to ICE syndication messages.  See Figure 2.7. 

 
Figure 2.7 ICE Message Header Structure 

2.11.1 Message Header Attributes 
The <icemes:header has 3 attributes that are used to identify the message. 

• timestamp 
Required.  Indicates the date and time the message was sent. 

• message-id 
Required. A unique identifier across all messages between a sender/receiver that 
identifies the message. 

• response-to 
Optional.  This attribute is an echo of a message to which this message is 
responding.  It is the previous message-id. 



ICE:  Primer 

28 

2.11.2 Message Header Elements 
The is made up of a required <icemes:sender element and optional <icemes:receiver 
and <icemes:user-agent elements.   

2.11.2.1 Sender 
The <icemes:sender provides information about the sender of this message.  The 
element is empty and has 5 attributes: 

• name 
Required.  This attribute is a string that is used to indicate the sender name. 

• role 
Optional.  This attribute provides a mechanism to indicate the role of the sender.  
Values include “syndicator” and “subscriber” 

• sender-id 
Required.  The unique identifier of the sender. 

• location 
Optional.  This attribute is a URI that points to the origin (sender) of the 
message. 

• compliance-level 
Default.  This attribute indicates the ICE compliance level of the sender.  The 
values are “basic” and “full”.  The default is set to “basic”. 

2.11.2.2 Receiver 
The <icemes:sender provides information about the sender of this message.  The 
element is empty and has 4 attributes: 

• name 
Required.  This attribute is a string that is used to indicate the sender name. 

• role 
Optional.  This attribute provides a mechanism to indicate the role of the sender.  
Values include “syndicator” and “subscriber” 

• receiver-id 
Required.  The unique identifier of the sender. 

• compliance-level 
Default.  This attribute indicates the ICE compliance level of the receiver.  The 
values are “basic” and “full”.  The default is set to “basic”. 

2.11.2.3 User-Agent 
The <icemes:user-agent element provides a text field to describe a user-agent, if one is 
employed.  If present, the <icemes:user-agent gives the software program used by the 
original client. This is for statistical purposes and the tracing of protocol violations. It 
should be included. 



ICE:  Primer 

29 

The <icemes:user-agent text field has a very specific format as defined by the W3C 
HTTP Protocol.  The first white space delimited word must be the software product 
name, with an optional slash and version designator. Other products, which form part of 
the user-agent, may be put as separate words. 

  <icemes:user-agent>  LII-Cello/1.0  libwww/2.5 
  </icemes:user-agent> 

2.12 ICE Status Codes 
ICE uses the familiar Internet protocol paradigm of three digit status values in responses 
to protocol operations. This paradigm was chosen because it is well understood and is 
suited to both machine-to-machine communication and human interpretation. 

2.12.1 Relationship Between SOAP Faults and 
ICE Status Codes 
The ICE status codes are carried within <icemes:status-code.  ICE status codes travel 
within the SOAP Body / SOAP Fault.  See the following example: 

<?xml version='1.0' ?> 
<env:Envelope  
 xmlns:env=”http://www.w3.org/2002/12/soap-envelope” 
 xmlns:rpc=”http://www.w3.org/2002/12/soap-rpc”> 
  <env:Header> 
<ice:Header timestamp=”2003-03-03” message-id=”m0056”> 
  <ice:Sender name=”mycompany” 
 role=”http://icestandard.org/ice/2.0/role/syndicator”  
   sender-id=”http://www.xxyz.org”/> 
  </ice:Header> 
  </env:Header> 
  <env:Body> 
   <env:Fault> 
 <env:Code> 
   <env:Value>env:Reciever</env:Value> 
   <env:Subcode> 
   <env:Value>ice:202</env:Value> 
   </env:Subcode> 
 </env:Code> 
 <env:Reason> 
<env:Text xml:lang="en-US">Package sequence state already 
current</env:Text> 
 </env:Reason> 
 <env:Detail> 
<ice:status-code code=”202”  
 reason=”Package sequence state already  
 current” subscription-id=”xxx”/> 
 </env:Detail> 
   </env:Fault> 
 </env:Body> 



ICE:  Primer 

30 

</env:Envelope> 

2.12.2 ICE Status Code Format 
The format of an ICE status code is described by the following schema fragment in ICE 
2.0:  

<element name = "status-code"> 
  <complexType> 
   <attribute name = "code" use = "required" type = 
"xs:positiveInteger"/> 
   <attribute name = "message-id" use = "required" type = 
"xs:token"/> 
   <attribute name = "subscription-id" use = "required"  
type = "xs:token"/> 
   <attribute name = "location" type = "xs:anyURI"/> 
   <attribute name = "duration" type = "icesdt:duration"/> 
   <anyAttribute namespace = "##other" processContents = 
"lax"/> 
  </complexType> 
</element> 

The attributes on <icemes:status-code are: 

• code 
Required. Three digit status/error code, as explained further below.  

• subscription-id 
Required. The subscription-id of the message being referenced by this code.  

• message-id 
Required. The message-id of the request referenced by this code, or, in some 
cases, the response-id of the response referenced by this code.  

• location 
Optional. The location is a URL returned along with code=431 (Failure 
fetching external data) to indicate a new fetch location. 

• duration 
Optional. The duration is returned along with code=422 (Schedule violation, try 
again later) to indicate the duration of the wait before trying again.  

2.12.3 Defined Status Codes 
The defined status codes are shown below. Each bullet item contains the three-digit code 
positiveInteger value, the corresponding phrase, and a description in italics. Note that 
the phrase and the description in italics is part of the explanation and not part of the status 
message.  

When generating codes: 

• Senders MUST supply a three digit code= value from the set defined here.  



ICE:  Primer 

31 

When receiving codes:  

• Receivers MUST understand all the three digit codes described in this 
specification.  

• Receivers MAY treat unrecognized codes not defined in the ICE specification, or 
9xx codes, in an implementation specific manner. As a quality of implementation 
issue, receivers could implement user interfaces allowing customized handling or 
mapping of unknown codes to specific actions; however, this specification does 
not require them to do so.  

The status values defined by ICE are: 

2xx: Success 

• 200 OK 
The operation completed successfully.  

• 201 Confirmed 
The operation is confirmed. This code is returned when requesting confirmation 
of package delivery. 

• 202 Package sequence state already current 
A Subscriber requested a package update, but the Subscriber is already in the 
current package sequence state, i.e., there are no updates at the moment.  

3xx: SOAP level Status Codes 

These indicate something about the SOAP message itself, as opposed to the individual 
requests and responses within the SOAP message. These codes have one very explicit 
and important semantic: they are used when the SOAP message could not be properly 
interpreted, meaning that even if there were multiple requests in the SOAP message, 
there will be only one code in the response. For example, if the SOAP message had been 
corrupted, it might be so corrupted that it isn't even possible to determine how many 
requests it contains, let alone respond to them individually. 

The specific codes are: 

• 320 Incompatible version 
The ICE protocol version used in the request is not supported. NOTE: The ICE 
protocol versions are transmitted as part of the message header, implementations 
may look there to decide what appropriate corrective actions to take. 
Implementations must follow the version rules.  This could also be generated for 
incompatibilities between conformance levels. 

4xx: Request level Status Codes 

These indicate errors caused by an inability to carry out an individual request. Note that 
in some cases there are similar errors between the 3xx and 4xx class; the difference is 



ICE:  Primer 

32 

whether or not the error is supplied as a single, message level error code (3xx) or whether 
it is supplied as a per request  code. 

• 400 Generic request error 
Generic status code indicating inability to comprehend the request. Usually, it is 
better to send a more specific code if possible.  

• 401 Incomplete/cannot parse 
The request sent is severely garbled and cannot be parsed. Note that in most 
cases, a message level error (301) might be more appropriate.  

• 402 Not well formed XML 
The request sent is recognizable as XML, but is not well formed per the definition 
of XML. This is available as both a message level error and as a request level 
(4xx) error. Whether a given implementation attempts to interpret not well formed 
XML so as to generate request level (4xx) errors versus. Message level (3xx) 
errors is a quality of implementation issue.  

• 403 Validation failure 
The request failed validation according to the Schema. This is available as both a 
message level error and as a request level (4xx) error. Whether a given 
implementation attempts to interpret not well formed XML so as to generate 
request level (4xx) errors versus. Message level (3xx) errors is a quality of 
implementation issue. Note that Receivers SHOULD perform validation on 
incoming ICE messages, but are not required to. Senders MUST send only valid 
ICE messages or they are in error; however, the ability to detect invalid messages 
is a quality-of-implementation issue for the Receiver, and Senders MUST NOT 
assume the Receiver will perform an XML validation on their messages.  

• 404 This error intentionally left blank  
• 405 Unrecognized sender  
• 406 Unrecognized subscription  
• 407 Unrecognized operation  
• 408 Unrecognized operation arguments  
• 409 Not available under this subscription 

The Requester has referenced something not covered by the subscription 
referenced in the request.  

• 410 Not found 
Generic error for being unable to find something, for example a subscription that 
has expired.  

• 411 Unrecognized package sequence state 
The package sequence identifier supplied by the Sender is not understood by the 
Receiver.  

• 412 Unauthorized  
• 413 Forbidden  
• 414 Business term violation  
• 420 Constraint failure 

Compliant implementations MUST NOT send this message if the constraint was 
not specified in the subscription.  



ICE:  Primer 

33 

• 422 Schedule violation, try again later. 
The request was made at an incorrect time. For example, trying to get a package 
update outside of the agreed upon timing window.  

• 430 Not confirmed 
Generic error indicating the operation is not confirmed.  

• 431 Failure fetching external data 
The receiver could not follow an external reference (URL) (<icedel:item-ref) 
given to it by the sender. Note that in ICE 2 only the Subscriber is permitted to 
reply with this code.  A Syndicator MUST NOT reply with this code.  

• 440 Sorry 
Used by the Syndicator to reject a subscribe request.  

5xx: Implementation errors and operational failures  

These indicate errors caused by internal or operational problems, rather than by incorrect 
requests. Note that, like all other codes except for the 3xx series, 5xx codesmust be sent 
individually with each response; if the error condition or operational problem prevents 
the Responder from resolving the original message down to the request level, use a 3xx 
code instead. 

• 500 Generic internal responder error 
Catch-all for general problems; recovery/retry behavior unspecified.  

• 501 Temporary responder problem 
Too busy, update in progress etc. Eventually an identical retry request might 
succeed.  

• 503 Not implemented 
The server does not implement the requested operation.  

6xx: Pending State 

These codes indicate a state condition where the Subscriber is expected to send 
something to the Syndicator, or vice versa. 

• 602 Excessive confirmations outstanding 
The Syndicator had requested confirmation of package delivery, and now refuses 
to perform any additional operations until the Subscriber supplies the 
confirmations (positive or negative).  

7xx: Local Use Codes 

These codes are reserved for use by the local ICE implementation and MUST NOT ever 
be sent to another ice processor over the transport medium. The intent is that this range of 
codes can be used by the local ICE implementation software to communicate transport 
level error conditions, or other specific local conditions, using the ice-code 
mechanism in a way guaranteed to not collide with any other usage of ice-code 
values. 



ICE:  Primer 

34 

9xx: Experimental Codes 

ICE implementations MUST NOT use any codes not listed in this specification, unless 
those codes are in the 9xx range. The 9xx range allows implementations to experiment 
with new codes and new facilities without fear of collision with future versions of ICE. 

How a given system treats any 9xx code is a quality of implementation issue. 



ICE:  Primer 

35 

3. ICE Conformance Levels 
ICE 2.0 defines three levels of conformance.  These levels of conformance spell out the 
features of ICE that must be supported for that level of conformance.  The definition of 
levels of conformance enables software vendors to develop ICE applications that are 
interoperable.   
� Basic ICE software can be expected to interoperate with other software that 

supports Basic ICE.   
� Full ICE software can be expected to interoperate with other software that 

supports Full ICE. 
� Full ICE software can be expected to interoperate with other software that 

supports Basic ICE. 
ICE features can be viewed as modules of the specification.  In this chapter we will 
examine these modules and define which features make up each level of ICE 
conformance. 

NOTE:  The ICE 2.0 Specification has purposely limited 
its scope to define Basic ICE and Full ICE.  Advanced 
syndication operations are allowed for within the 
specification as Optional ICE extensions.  The idea here is 
to allow for implementations to extend the ICE protocol in 
such a way that advanced syndication operations may be 
allowed for in a predictable and controlled manner. 

3.1 ICE Modularity 
One of the early design goals for ICE 2.0 was the requirement to provide modularity for 
ICE.  Modularity, in effect, enables users of the ICE specification to select certain 
modules for implementation and leave others unimplemented.  Modularity enables ICE to 
interoperate with other specifications, such as RDF or PRISM, in a seamless fashion. 
The ICE modules correspond to features of ICE for each level of conformance.  See 
Figure 3.1. 



ICE:  Primer 

36 

 
Figure 3.1.  ICE modules by increasing functionality 

3.1.1 SOAP Response Message Exchange Pattern 
(HTTP:GET) Transport 
Basic ICE, the simplest form of ICE,  relys on the SOAP Response Message Pattern  
(HTTP:GET) transport, also known as REST (REpresentational State Transfer) .  The 
binding for this transport does not need to be defined by a WSDL script.  .  This replaces 
the concept of the “minimal subscriber” that was part of ICE 1.0. 

3.1.2 Message / Package Delivery 
Package delivery is required for every level of ICE since that is the essence of 
syndicating content.  Package delivery as a feature includes the following: 

ICE message header 

ICE package and get-package 



ICE:  Primer 

37 

3.1.3 SOAP Transport 
Because one of the design goals of ICE 2.0 is to enable ICE as a Web service, the 
capability of ICE to function over SOAP is required.  ICE 2.0 remains a transport 
independent protocol.  However Full ICE explicitly requires the binding of the generic 
ICE protocol over the SOAP transport mechanism using the SOAP Request-Response 
Message Pattern.  The binding for this transport is defined in the ice-syndicator-full 
WSDL script. 

  <!--SOAP Binding  --> 
  <binding name="ice-syndicator-full-binding" 
type="tns:ice-syndicator-full-portType"> 
<soap:binding style="document" 
   transport="http://schemas.xmlsoap.org/soap/http"/> 
 
<!-- OPERATIONS GO HERE --> 
 
  </binding> 

3.1.4 Subscription Management 
Full ICE adds the capability to establish subscriptions with delivery policies as well as to 
check the status of the subscription and cancel the subscription.  While subscription 
management is central to ICE-based syndication, a simple form of ICE, Basic ICE, 
enables syndication without the added sophistication of subscription management. 

3.1.5 Incremental Updates 
ICE 2.0 allows for two kinds of updates for subscription content.  The simplest update is 
the full update mechanism.  A full update is a complete replacement of all the content of 
a subscription.  Full ICE allows for incremental updates in which only the content that is 
new or changed is replaced.  See ICE 2.0:  Full ICE Specification. 

3.1.6 Delivery Confirmation 
The ICE 2.0 Specification provides messages by which a Subscriber can provide 
confirmation that a package was received and processed.  See ICE 2.0:  Full ICE 
Specification. 

3.1.7 Logging 
The ICE 2.0 Specification defines ICE logging capabilities from ICE 1.x as an optional 
extension. This extension will allow a Syndicator to request the protocol event logs of the 
Subscriber, and vice versa, as an aid for debugging and diagnosis.  To learn how to 



ICE:  Primer 

38 

extend ICE 2.0 to include optional logging functions, see ICE 2.0: Extending the ICE 
Protocol. 

3.1.8 Negotiation 
The ICE 2.0 Specification defines parameter negotiation as an optional extension.  This 
extension provides a means for Syndicator and the Subscriber to reach mutually 
agreeable subscription operation. The model also permitted a Syndicator or Subscriber to 
define and negotiate other parameters of importance to both the subscription, and the 
Syndicator/Subscriber relationship and permitted semantic extension through generalized 
parameter negotiation.  To learn how to extend ICE 2.0 to include optional parameter 
negotiation functions, see ICE 2.0:  Extending the ICE Protocol. 

3.2 More about Modularity 
ICE modules correspond to features of ICE for each level of conformance: 

• The Full ICE Syndicator WSDL describes the set of operations that implementers 
will have to support in order to satisfy Full ICE conformance.  The ICE 
Subscriber WSDL describes the set of operations that implementers will have to 
support on the subscriber side to satisfy Full ICE conformance.   

• Neither the Basic ICE Syndicator nor the Basic ICE Subscriber have an end point, 
hence there is no requirement for a WSDL script.  Basic ICE utilizes the simple 
HTTP:GET mechanism only. 

3.3 ICE Levels of Conformance 
ICE 2.0 defines three levels of conformance.  These levels of conformance spell out the 
features of ICE that must be supported for that level of conformance.  The definition of 
levels of conformance enables software vendors to develop ICE applications that are 
interoperable.  So Basic ICE software can be expected to interoperate with other software 
that supports Basic ICE.  And Full ICE software can be expected to interoperate with 
other software that supports Full ICE. 

3.3.1 Basic ICE 
The Basic ICE level of conformance provides for very simple syndication functionality.  
In fact, all that Basic ICE enables is for the Syndicator to post messages to a URL where 
the Subscriber can “get” them: 

• <icedel:package (this is limited to a single package) 
• <icemsg:status-code  

In Basic ICE, the Subscriber initiates all messages with HTTP GET to URLs on the 
Syndicator.  Basic ICE does not allow for subscription management capabilities.  The 



ICE:  Primer 

39 

Syndicator sends no messages to the Subscriber in Basic ICE.  Basic ICE has no requirement 
for either the Syndicator or the Subscriber to establish a “listener” for push messages.  Refer 
to ICE 2.0: Basic ICE Specification for Basic ICE features/modules. 

 
Figure 3.1 Basic ICE capabilities 

3.3.2 Full ICE 
A Full ICE implementation implements all the features of the ICE 2.0 specification.  Full 
ICE implementations must support SOAP transport bindings and adds messages to 
support subscription management.  Additional messages include: 

• <icesub:subscribe 
• <icesub:subscription 
• <icesub:cancel 
• <icesub:cancellation 
• <icesub:get-status 
• <icesub:status 
• <icedel:package-confirmations 

 



ICE:  Primer 

40 

 
Figure 3.2 Full ICE capabilities 

3.3.3 Optional ICE Extensions 
The ICE Authoring Group chose to remove a number of capabilities of ICE 2.0 
specification to simplify the specification.  These capabilities will be detailed in 
additional specifications that go beyond Full ICE as defined by this document.  It will be 
the responsibility of implementers to take these additional specifications into account 
when developing syndication solutions.  


