

ICE: Information and Content
Exchange Protocol

Guidelines to Extending the ICE
Protocol

Version 2.0

2004 08 01
This version

http://www.icestandard.org/Spec/SPEC-ICE-2.0Extend.pdf
Latest version

http://www.icestandard.org/Spec/SPEC-ICE2.0d.pdf
Previous version

http://www.icestandard.org/Spec/SPEC-ICE1.1.htm

Editors:

Jay Brodsky, Tribune Media Services
Marco Carrer, Oracle Corporation
Bruce Hunt, Adobe Systems, Inc.
Dianne Kennedy, IDEAlliance
Daniel Koger, Independent Consultant
Richard Martin, Active Data Exchange
Laird Popkin, Warner Music Group
Adam Souzis, Independent Consultant

Copyright (c) International Digital Enterprise Alliance, Inc. [IDEAlliance] (1998, 1999,

2001, 2001, 2003, 2004). All Rights Reserved.

Guidelines to Extending the ICE Protocol

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to

IDEAlliance, except as needed for the purpose of developing IDEAlliance specifications,
in which case the procedures for copyrights defined in the IDEAlliance Intellectual

Property Policy document must be followed, or as required to translate it into languages
other than English. The limited permissions granted above are perpetual and will not be

revoked by IDEAlliance or its successors or assigns.
NO WARRANTY, EXPRESSED OR IMPLIED, IS MADE REGARDING THE ACCURACY, ADEQUACY,
COMPLETENESS, LEGALITY, RELIABILITY OR USEFULNESS OF ANY INFORMATION CONTAINED IN
THIS DOCUMENT OR IN ANY SPECIFICATION OR OTHER PRODUCT OR SERVICE PRODUCED OR
SPONSORED BY IDEALLIANCE. THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN AND
INCLUDED IN ANY SPECIFICATION OR OTHER PRODUCT OR SERVICE OF IDEALLIANCE IS PROVIDED
ON AN " AS IS" BASIS. IDEALLIANCE DISCLAIMS ALL WARRANTIES OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY ACTUAL OR ASSERTED WARRANTY OF NON-
INFRINGEMENT OF PROPRIETARY RIGHTS, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.NEITHER IDEALLIANCE NOR ITS CONTRIBUTORS SHALL BE HELD LIABLE FOR ANY
IMPROPER OR INCORRECT USE OF INFORMATION. NEITHER IDEALLIANCE NOR ITS CONTRIBUTORS
ASSUME ANY RESPONSIBILITY FOR ANYONE'S USE OF INFORMATION PROVIDED BY IDEALLIANCE.
IN NO EVENT SHALL IDEALLIANCE OR ITS CONTRIBUTORS BE LIABLE TO ANYONE FOR DAMAGES
OF ANY KIND, INCLUDING BUT NOT LIMITED TO, COMPENSATORY DAMAGES, LOST PROFITS, LOST
DATA OR ANY FORM OF SPECIAL, INCIDENTAL, INDIRECT, CONSEQUENTIAL OR PUNITIVE DAMAGES
OF ANY KIND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY, TORT, PRODUCT
LIABILITY OR OTHERWISE.

IDEAlliance takes no position regarding the validity or scope of any intellectual property

or other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such

rights might or might not be available. IDEAlliance does not represent that it has made
any effort to identify any such rights. Information on IDEAlliance's procedures with

respect to rights in IDEAlliance specifications can be found at the IDEAlliance website.
Copies of claims of rights made available for publication, assurances of licenses to be

made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementers or users of this specification, can

be obtained from the President of IDEAlliance.

IDEAlliance requests interested parties to disclose any copyrights, trademarks, service
marks, patents, patent applications, or other proprietary or intellectual property rights

which may cover technology that may be required to implement this specification. Please
address the information to the President of IDEAlliance.

Status of this Document
This document is an approved IDEAlliance Specification. It represents a significant step
towards a stable specification suitable for widespread dissemination and implementation.
It has been reviewed and approved by the ICE Authoring Group of IDEAlliance.

ICE 2.0 is the first major revision of the ICE Specification. As such, ICE 2.0 is not a
compatible update to the ICE 1.0 specification. This update is a response to the
implementation experience that has been gained over the past four years as well as the
advancement in technology and W3C Recommendations. It differs from the ICE 1.0 and
ICE 1.1 specifications in that it is specifically designed to support a Web Services model
for syndication, has been modularized, incorporates XML Namespaces, and moves from
an XML DTD to XML Schema.

As of this publication, the ICE Specification has been organized into a set of documents.
This is one document in a set of documents (ICE Primer: Introduction and Overview, ICE
Cookbook, Basic ICE Specification , Full ICE Specification, ICE Schemas and Scripts,
and Guidelines to Extending the ICE Protocol) intended to jointly replace ICE 1.1. It has
been developed by the IDEAlliance ICE Authoring Group. New documents may be
added to this set over time.

The ICE Authoring Group and IDEAlliance recommend that implementations be updated
to conform to the new ICE 2.0 Specification. The new specification embraces the latest
Web technologies and W3C Recommendations. It provides added functionality that
greatly enhances the usability of the protocol in a very wide range of syndication
applications and can provide a substantial foundation for delivering syndication solutions
in a Web Services environment.

Abstract
This document describes the Information and Content Exchange protocol for use by
content syndicators and their subscribers. The ICE protocol defines the roles and
responsibilities of Syndicators and Subscribers, defines the format and method of content
exchange, and provides support for management and control of syndication relationships.
We expect ICE to be useful in automating content exchange and reuse, both in traditional
publishing contexts and in business-to-business relationships where the exchange
eBusiness content must be reliably automated.

Guidelines to Extending the ICE Protocol

Table of Contents

Status of this Document... i

Abstract.. i

1. Extending the ICE Protocol .. 1

2. More About XML Namespaces .. 2

2.1 Using XML Namespaces in an ICE Message... 2

2.2 Defining Extensions.. 3
2.2.1 Simple ICE Extensions .. 3

2.2.1.1 Select a Namespace... 3
2.2.1.2 Use Your Own Elements .. 3
2.2.1.3 Use Your Own Attributes ... 4

2.2.2 Formal ICE Extensions .. 5
2.2.2.1 Declare Your Own XML Schema... 5
2.2.2.2 Using Your Own Elements ... 5
2.2.2.3 Using Your Own Attributes .. 5

3. Where Can ICE be Extended? .. 6

3.1 Extensions in the ICE Message .. 6

3.2 Extensions in ICE Delivery .. 7

3.3 Extensions in ICE Subscribe... 8

4. Indicating ICE Extensions .. 10

4.1 ICE Message Header .. 10
4.2 ICE Offer .. 11

5. Extending ICE 2.0 to Include ICE 1.* Features.. 12

6. Interoperability of ICE Extensions ... 13

Guidelines to Extending the ICE Protocol

 1

1. Extending the ICE Protocol
Authors of the ICE 2.0 Specification have purposely limited its scope to define Basic ICE
and Full ICE. Advanced syndication operations are allowed for as extensions to ICE 2.0.
This extended level of ICE conformance is known as Optional ICE. Optional ICE
extensions allow implementers to extend the ICE protocol in such a way that advanced
syndication operations may be allowed for in a predictable and controlled manner and
interoperation can be achieved.
This chapter describes how to extend the ICE protocol. It provides details about how the
use XML Namespaces along with custom WSDL scripts can be used to extend the ICE
protocol.

Guidelines to Extending the ICE Protocol

 2

2. More About XML Namespaces
XML namespaces provide a simple method for qualifying element and attribute names
used in XML documents by associating them with namespaces identified by URI
references. XML Namespaces enable us to define a set of unique element names within a
given context while preventing element collisions and enabling computers to
unequivocally determine exact points of reference. Such unique addressing is critical to
support extensibility of ICE 2.0.
In ICE 2.0, all ICE-defined elements found in one of three ICE namespaces to enable ICE
to function as a Web service and utilize SOAP messaging. In addition, an ICE
namespace for simple datatypes has been defined.

2.1 Using XML Namespaces in an ICE
Message
The following example shows how elements from different namespaces are combined in
a simple ICE message. Notice here that we are accessing the W3C SOAP envelope
namespace (xmlns:env) as well as elements from the ICE message namespace
(xmlns:icemes) and the ICE delivery namespace (xmlns:icedel). Each namespace is
shown in bold.

<?xml version="1.0" ?>
<env:Envelope xmlns:env='http://www.w3.org/2002/12/soap-
envelope'>
 <env:Header>
 <icemes:Header
 xmlns:icemes=’http://icestandard.org/ICE/Spec/V20/message’
timestamp=”2003-03-03” message-id=”m0056”>
<icemes:Sender name=”mycompany”
 role=”http://icestandard.org/ice/2.0/role/syndicator”
 sender-id=”http://www.xxyz.org”/>
</ice:Header>
 </env:Header>
 <env:Body>
<icedel:package
xmlns:icemes=’http://icestandard.org/ICE/Spec/V20/delivery’
 new-state=”P3” old-state=”P2”
 fullupdate=”false” package-id=”012”
 subscription-id=”3”>
 <icedel:add is-new=”true”>
 <icedel:item-ref>
 <icedel:reference
 url=”http://mysite.com/xxx.htm”>
 <icedel:/item-ref>
</icedel:add>
</icedel:package>
 </env:Body>
<env:Envelope>

Guidelines to Extending the ICE Protocol

 3

2.2 Defining Extensions
Extensions to ICE 2.0 can be made in a very simple, yet XML-conformant manner or in a
more formal manner. These types of ICE extensions are discussed in Section 2.2.1 and
2.2.2.

2.2.1 Simple ICE Extensions
Simple ICE extensions are very straightforward. They do not require the definition of an
XML schema or writing new WSDL scripts. For simple ICE extensions just use your
own attributes and elements, within a unique namespace, in a well-formed SOAP/ICE
instance.

2.2.1.1 Select a Namespace
If you are going to mix your own elements and attributes with the ICE message, you must
select a namespace to identify the elements. That namespace will be declared the first
time you use the element. Note how this is done in the example:

 <icemes:status-code code=”200”>
 <myice:codeDescription
 xmlns:myice = “http://myco.com/myice”>

It is important to understand that the main purpose of a namespace name such as
http://myco.com/myice is a URI but not meant to point to a resource. Rather it is used to
provide unique identification. The namespace name is not required to be de-referencable.
So in the case of a simple ICE extension, this namespace name need not point to
anything. And you do not have to have an XML schema definition behind it.

2.2.1.2 Use Your Own Elements
While the ICE Authoring Group had the ability to add extensions to ICE 2.0 as a design
goal, they also were committed to limiting extensions to those that were created in a
predictable and controlled manner. To accomplish this goal, designers of ICE 2.0 created
points in the ICE structure where extensions from other namespaces could be added. In
Figure2.1, you can see where the ICE header may be extended. In the positions where
#wildCard appears, elements from any namespace can be included.

Guidelines to Extending the ICE Protocol

 4

Figure2.1 ICE Extensions Allowed at Limited Points

Once you have declared the namespace, you are free to use elements from that
namespace any place that ICE 2.0 allows extensions.

2.2.1.3 Use Your Own Attributes
In addition to using your own elements, you may want to extend ICE by adding attributes
as well. The Authors of ICE 2.0 have accounted for this in their schemas. Each attribute
list within an ICE schema contains a mechanism that enables you to add any attribute
from any namespace. It provides a sort of attribute wildcard so that you may add
attributes from any namespace. The xs:anyAttribute mechanism is highlighted in the
example schema below:

<xs:element name = "cancellation">
 <xs:complexType>
<xs:attribute name = "cancellation-id" use = "required"
type = "xs:token"/>
<xs:attribute name = "subscription-id" use = "required"
type = "xs:token"/>
<xs:anyAttribute namespace = "##other" processContents =
"lax"/>
 </xs:complexType>
</xs:element>

When you add your own attributes, remember to preface the attribute with the
namespace, just as you did with the elements.

<icemes:status-code xmlns:myice = “http://myco.com/myice”
 code=”200” myice:type=”success”>
 <myice:codeDescription>Description of the code goes here
 </myice:codeDescription>
 </icemes:status-code>

Note that the namespace declaration can be used within any element start-tag and the
scope of the namespace is within that element. So in the example of using your own
elements, the scope is simply within <myice:codeDescription. But in this example,
the scope of the namespace is anywhere within the <icemes:status-code.

Guidelines to Extending the ICE Protocol

 5

2.2.2 Formal ICE Extensions
There is a specific method to defining formal extensions to ICE 2.0.

1. Declare an XML schema in a unique namespace for the extensions you wish to
implement

2. Use your own elements
3. Use your own attributes
4. Create new WSDL scripts to reflect the extensions, if necessary

2.2.2.1 Declare Your Own XML Schema
If you wish to extend ICE 2.0 by adding elements with new functionality, such as to
support parameter negotiation, begin by defining your own XML schema. The example
below shows a hypothetical schema where we have added the element <accessCode.

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns = "http://myco.com/myschema/extendheader"
 targetNamespace = "http://myco.com/myschema/extendheader"
xmlns:xs = "http://www.w3.org/2001/XMLSchema"
elementFormDefault = "qualified">
 <xs:include schemaLocation = "ice-simpledatatypes.xsd"/>
 <xs:element name = "accessCode">
<xs:complexType>
 <xs:attribute name = "code" use = "required" type =
"xs:token"/>
</xs:complexType>
 </xs:element>
</xs:schema>

2.2.2.2 Using Your Own Elements
Just as with simple ICE extensions, you are free to use your own elements wherever ICE
2.0 allows extensions. This will be covered in Section 6.3.

NOTE: If you have declared your own schema, it is
expected that you not only provide well-formed XML, but
that the elements will validate according to your schema.

2.2.2.3 Using Your Own Attributes
Just as with simple ICE extensions, you are free to use your own attributes on any
element. You must, however, use proper namespace conventions.

Guidelines to Extending the ICE Protocol

 6

3. Where Can ICE be Extended?
As was pointed out earlier, the authors of ICE 2.0 were careful to allow for extensions in
places that were predictable and controlled. These extension points apply whether ICE is
simply extended or formally extended. Graphics of the ICE 2.0 schema show where Full
ICE can be extended by either method.

3.1 Extensions in the ICE Message
The ICE Message is made up of the ICE header and of ICE status codes. Using
namespaces, we are able to include these within the SOAP envelope header and body
respectively. The ICE header can be extended by adding elements to the
<icemes:header itself. See Figure 2.1. Note that extensions may be made wherever
#wildcard is shown.
The ICE status code is shown in Figure 3.1. Notice that we can add our own extension
elements to the status code.

Figure 3.1 ICE Status-code Extensions

In this example, we have added an element from our own namespace, “myice:” to the
status code to add a description field:

<icemes:status-code code=”202”
 reason=”Package sequence state already current”
 subscription-id=”KKK12U03”
 xmlns:myice = “http://myco.com/myice”>
 <myice:description>This code indicates that the
subscription status is up to date</myice:description>
</icemes:status-code>

Guidelines to Extending the ICE Protocol

 7

3.2 Extensions in ICE Delivery
Elements within the ICE delivery namespace have also been designed to allow for
controlled extensions. The ICE package shown in Figure 3.2 can be extended directly or
within a <icedel:group, <icedel:add, or <icedel:remove-item.

Figure 3.2 Extensions May be Made at Several Locations within the Package Elements

In the following example an Ice package has been extended to include <myice:removal-
reason from the namespace “myice:”.

<icedel:package
 xmlns:icedel="http://icestandard.org/ICE/V20/delivery"
 new-state="ICE-ANY"
 old-state="ICE-ANY"
 fullupdate="true"
 package-id="16T00U9"
 subscription-id="KKK0098">
 <icedel:remove-item subscription-element-id=”K1234D”
 xmlns:myice = “http://myco.com/myice”>
<myice:removal-reason>This item is out-of-date
 and has no replacement
</myice:removal-reason>
 </remove-item>
</icedel:package>

Guidelines to Extending the ICE Protocol

 8

Note: It turns out this very extension mechanism enables
the Syndicator to include <icesub:offer within a package
in response to the <icesub:get-catalog request from a
Subscriber. In this case the Syndicator is including the
offer from the icesub: namespace within the
<icedel:add element. But extensions to other namespaces
can be made at the same nodes as well.

3.3 Extensions in ICE Subscribe
Elements within the ICE subscribe namespace have also been designed to allow for
controlled extensions. See Figure 3.3 to find extension nodes.

Figure 3.3 Extensions to the ICE Subscription Model

In the following example note how the subscribe message has been extended. A new
namespace “myice:” has been declared. Then an element from within that namespace
(<myice:description-code) has been added to <icesub:description in order to
enable the use of standard description coding.

Guidelines to Extending the ICE Protocol

 9

<icesub:subscribe>
<icesub:offer
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id="offID2"
name="offName2">
 <icesub:description
xmlns:myice = “http://myco.com/myice”>
 <myice:description-code code=”C1212”/>
 </icesub:description>
 <icesub:delivery-policy quantity="100"
expiration-priority="quantity">
 <icesub:delivery-rule mode="push">
 <icesub: transport protocol="soap"
 packaging-style=”ice”>
<icesub:delivery-endpoint
 url="http://sub.com/push.jsp" username="foo"
 password="foofoo"/>
 </icesub:transport>
 </icesub:delivery-rule>
 </icesub:delivery-policy>
</icesub:offer>
</icesub:subscribe>

Guidelines to Extending the ICE Protocol

 10

4. Indicating ICE Extensions
When a Syndicator is extending ICE, there are several indications given to the
Subscriber. These include:

4.1 ICE Message Header
The <icemes:header includes attributes for both the <icemes:sender and
<icemes:receiver to indicate their compliance level. This attribute has pre-defined
values of “basic” and “full” with a default of “basic”. However the value of the attribute
is anyURI, and enables the sender to point to a URI that defines the Optional ICE
extensions. See Figure 4.1.

Figure 4.1 Compliance Level Attribute in ICE Message Header

Guidelines to Extending the ICE Protocol

 11

4.2 ICE Offer
Extended ICE is indicated in the offer using the <icesub:required-extensions element.
See Figure 4.2.

Figure 4.2 Required Extensions Indicated in Offer

Note: Extensions assume Full ICE capabilities. So in
addition to specifying one or more required extensions in
the offer, the Syndicator must have the full-ice= attribute
set to “true”.

Guidelines to Extending the ICE Protocol

 12

5. Extending ICE 2.0 to Include
ICE 1.* Features
One of the early design goals for ICE 2.0 was the requirement to provide modularity for
ICE. Modularity, in effect, enables users of the ICE specification to select certain
modules for implementation and leave others unimplemented. A Full ICE
implementation implements all the features of the ICE 2.0 specification. The ICE AG
chose to remove a number of capabilities of ICE 1.* specification within the ICE 2.0
specification in order to simplify the specification and facilitate implementation. It is the
goal of the ICE Authoring Group that features that go beyond Full ICE as defined by this
document will be defined by additional specifications.
If an implementer requires features from the ICE 1.* specification, these can be added by
the following steps:

1. Examine the structure of the optional feature in the ICE 1.* specification and
determine where that optional feature will fit within the extension mechanism for
ICE 2.0.

2. Define the optional feature using XML Schema and assign a namespace
3. Reference this optional feature schema along with the ICE schema definitions

using XML namespaces
4. Review the WSDL scripts and, if necessary, create two new WSDL scripts to

support your Optional ICE implementation:
• ice-syndicator-extension.wsdl
• ice-subscriber-extension.wsdl

5. Implement the Optional Syndicator and Subscriber in ICE software

Guidelines to Extending the ICE Protocol

 13

6. Interoperability of ICE
Extensions
ICE 2.0 defines three levels of conformance that spell out the features of ICE that must
be supported for that level of conformance. These conformance levels are:

• Basic ICE (the default)
• Full ICE (documented in this specification)
• Optional ICE Extensions (Full ICE plus user defined capabilities)

In terms of interoperability
 Basic ICE software can be expected to interoperate with other software that

supports Basic ICE.
 Full ICE software can be expected to interoperate with other software that

supports Full ICE.
 Full ICE software can be expected to interoperate with other software that

supports Basic ICE.
 Extended ICE software can be expected to interoperate with other software that

understands and supports the same extensions.
Note: When an ICE implementation with an optional ICE extension is interoperating with
another ICE implementation without that extension, it MUST restrict itself to function
without that extension.

Guidelines to Extending the ICE Protocol

 14

