

ICE: Information and Content
Exchange Protocol

Full ICE Specification

Version 2.0

2004 08 01
This version

http://www.icestandard.org/Spec/SPEC-ICE-2.0Full.pdf
Latest version

http://www.icestandard.org/Spec/SPEC-ICE2.0d.pdf
Previous version

http://www.icestandard.org/Spec/SPEC-ICE1.1.htm

Editors:

Jay Brodsky, Tribune Media Services
Marco Carrer, Oracle Corporation
Bruce Hunt, Adobe Systems, Inc.
Dianne Kennedy, IDEAlliance
Daniel Koger, Independent Consultant
Richard Martin, Active Data Exchange
Laird Popkin, Warner Music Group
Adam Souzis, Independent Consultant

Copyright (c) International Digital Enterprise Alliance, Inc. [IDEAlliance] (1998, 1999,

2001, 2001, 2003, 2004). All Rights Reserved.

ICE: Full ICE Specification

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to

IDEAlliance, except as needed for the purpose of developing IDEAlliance specifications,
in which case the procedures for copyrights defined in the IDEAlliance Intellectual

Property Policy document must be followed, or as required to translate it into languages
other than English. The limited permissions granted above are perpetual and will not be

revoked by IDEAlliance or its successors or assigns.
NO WARRANTY, EXPRESSED OR IMPLIED, IS MADE REGARDING THE ACCURACY, ADEQUACY,
COMPLETENESS, LEGALITY, RELIABILITY OR USEFULNESS OF ANY INFORMATION CONTAINED IN
THIS DOCUMENT OR IN ANY SPECIFICATION OR OTHER PRODUCT OR SERVICE PRODUCED OR
SPONSORED BY IDEALLIANCE. THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN AND
INCLUDED IN ANY SPECIFICATION OR OTHER PRODUCT OR SERVICE OF IDEALLIANCE IS PROVIDED
ON AN " AS IS" BASIS. IDEALLIANCE DISCLAIMS ALL WARRANTIES OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY ACTUAL OR ASSERTED WARRANTY OF NON-
INFRINGEMENT OF PROPRIETARY RIGHTS, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.NEITHER IDEALLIANCE NOR ITS CONTRIBUTORS SHALL BE HELD LIABLE FOR ANY
IMPROPER OR INCORRECT USE OF INFORMATION. NEITHER IDEALLIANCE NOR ITS CONTRIBUTORS
ASSUME ANY RESPONSIBILITY FOR ANYONE'S USE OF INFORMATION PROVIDED BY IDEALLIANCE.
IN NO EVENT SHALL IDEALLIANCE OR ITS CONTRIBUTORS BE LIABLE TO ANYONE FOR DAMAGES
OF ANY KIND, INCLUDING BUT NOT LIMITED TO, COMPENSATORY DAMAGES, LOST PROFITS, LOST
DATA OR ANY FORM OF SPECIAL, INCIDENTAL, INDIRECT, CONSEQUENTIAL OR PUNITIVE DAMAGES
OF ANY KIND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY, TORT, PRODUCT
LIABILITY OR OTHERWISE.

IDEAlliance takes no position regarding the validity or scope of any intellectual property

or other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such

rights might or might not be available. IDEAlliance does not represent that it has made
any effort to identify any such rights. Information on IDEAlliance's procedures with

respect to rights in IDEAlliance specifications can be found at the IDEAlliance website.
Copies of claims of rights made available for publication, assurances of licenses to be

made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementers or users of this specification, can

be obtained from the President of IDEAlliance.

IDEAlliance requests interested parties to disclose any copyrights, trademarks, service
marks, patents, patent applications, or other proprietary or intellectual property rights

which may cover technology that may be required to implement this specification. Please
address the information to the President of IDEAlliance.

Status of this Document
This document is an approved IDEAlliance Specification. It represents a significant step
towards a stable specification suitable for widespread dissemination and implementation.
It has been reviewed and approved by the ICE Authoring Group of IDEAlliance.

ICE 2.0 is the first major revision of the ICE Specification. As such, ICE 2.0 is not a
compatible update to the ICE 1.0 specification. This update is a response to the
implementation experience that has been gained over the past four years as well as the
advancement in technology and W3C Recommendations. It differs from the ICE 1.0 and
ICE 1.1 specifications in that it is specifically designed to support a Web Services model
for syndication, has been modularized, incorporates XML Namespaces, and moves from
an XML DTD to XML Schema.

As of this publication, the ICE Specification has been organized into a set of documents.
This is one document in a set of documents (ICE Primer: Introduction and Overview, ICE
Cookbook, Basic ICE Specification , Full ICE Specification, ICE Schemas and Scripts,
and Guidelines to Extending the ICE Protocol) intended to jointly replace ICE 1.1. It has
been developed by the IDEAlliance ICE Authoring Group. New documents may be
added to this set over time.

The ICE Authoring Group and IDEAlliance recommend that implementations be updated
to conform to the new ICE 2.0 Specification. The new specification embraces the latest
Web technologies and W3C Recommendations. It provides added functionality that
greatly enhances the usability of the protocol in a very wide range of syndication
applications and can provide a substantial foundation for delivering syndication solutions
in a Web Services environment.

Abstract
This document describes the Information and Content Exchange protocol for use by
content syndicators and their subscribers. The ICE protocol defines the roles and
responsibilities of Syndicators and Subscribers, defines the format and method of content
exchange, and provides support for management and control of syndication relationships.
We expect ICE to be useful in automating content exchange and reuse, both in traditional
publishing contexts and in business-to-business relationships where the exchange
eBusiness content must be reliably automated.

ICE: Full ICE Specification

 2

Table of Contents

Status of this Document... i

Abstract.. i

1. Full ICE Overview.. 4

2. A Full ICE Scenario.. 5

2.1 Syndicator and Subscriber Set up a Business Agreement.. 5

2.2 Syndicator and Subscriber Set up a Subscription .. 6
2.2.1 Subscriber Receives Packages of Subscription Offers 6
2.2.2 Subscriber Sends a Request to Subscribe to the Offer....................................... 6
2.2.3 Syndicator Accepts Request and Responds with Subscription Message........... 6

2.3 Subscriber Receives Content.. 6
2.3.1 Subscriber Requests Initial Subscription Content.. 7
2.3.2 Syndicator Responds with Full Content of Subscription................................... 7
2.3.3 Subscriber Confirms Delivery ... 7
2.3.4 Variations on the Full ICE Scenario .. 7

3. Transport and Messaging.. 8

3.1 SOAP Binding with SOAP Request Respond Message Pattern............................... 8

3.2 Integrated ICE/SOAP Message .. 8

4. Subscription Management .. 9

4.1 Subscription Establishment Overview.. 9

4.2 Get Package of Offers... 9

4.3 Offers .. 10

4.4 Offer Attributes... 12

4.5 Offer Elements.. 12
4.5.1 Content Metadata ... 12
4.5.2 Offer Metadata ... 14
4.5.3 Description... 15
4.5.4 Delivery Policy .. 15

4.5.4.1 Delivery Rule .. 17
4.5.4.1.1 Transport .. 19
4.5.4.1.2 Delivery-Endpoint.. 19

4.5.4.2 Syndicator Offer Specifications by Mode... 20
4.5.4.3 Example Delivery Rules ... 21

4.5.4.2.1 Simple “Pull” Delivery Rule.. 21
4.5.4.2.2 “Pull” Delivery Rule with Syndicator Delivery Settings................... 22
4.5.4.2.3 Single “Push” Delivery Rule ... 23
4.5.4.2.4 Combined “Pull” and “Push” Delivery Rule 24

4.5.5 Offer Business Term .. 25

ICE: Full ICE Specification

 3

4.6 Subscribing ... 27
4.6.1 Subscribe Element ... 27

4.6.1.1 Subscribing Directly to an Offer... 28
4.6.1.2 Subscribing with Subscriber Parameters Returned................................... 28

4.6.1.2.1 Subscriber Transport.. 29
4.6.1.2.2 Example Subscribe Message with Subscriber Parameters................. 29

4.6.2 Subscription Initiated ... 29
4.6.3 Subscription Declined.. 31
4.6.4 ICE Subscription Fault... 32

5. Other Subscription Operations.. 34

5.1 Get Status.. 34

5.2 Status... 34

5.3 Cancel ... 35

5.4 Cancellation .. 36

6. Packages and Delivery.. 37

6.1 Package Attributes .. 38

6.2 Package Elements ... 38
6.2.1 Group ... 39
6.2.2 Metadata... 39
6.2.3 Add... 40
6.2.4 Remove Item.. 41
6.2.5 Item .. 42
6.2.6 Item-Ref ... 42
6.2.7 Reference ... 43

6.3 Package Confirmations ... 43

ICE: Full ICE Specification

 4

1. Full ICE Overview
Basic ICE provides for a very simple syndication model where the Subscriber does not
have an ICE server running constantly and polls for content as required. But, when more
robust syndication functionality is required, Full ICE is appropriate. Full ICE extends
Basic ICE functionality to add subscription management services as well as other
advanced capabilities such as “push” delivery.
Full ICE also differs from Basic ICE in that the Subscriber is a sophisticated server
implementation capable of not only sending ICE requests, but also receiving
communications initiated by the Syndicator, such as the "push" of new content. In a Full
ICE implementation both the Syndicator and Subscriber have an ICE server running at all
times. Each must support SOAP transport bindings as well as subscription management
capabilities.
Because Full ICE is an extension of Basic ICE, a Basic ICE implementation can talk to a
Full ICE implementation, but without the advantages of Full ICE.

ICE: Full ICE Specification

 5

2. A Full ICE Scenario
Let’s look at a step-by-step example of a simple transaction between a Syndicator and a
Subscriber in a familiar industry. The Syndicator, the Best Code Company, a software
developer, sets up and delivers a subscription to Tech News, a trade journal for the high
technology industry. See Figure 2.1.

Figure 2.1 Full ICE Scenario

2.1 Syndicator and Subscriber Set up a
Business Agreement
Syndication relationships begin with a business agreement. Best Code and Tech News
agree on such terms as payment issues, usage rights, and subscription lifetime. The
business agreement negotiation happens outside ICE and can involve person-to-person
discussion, legal review, and contracts. Alternatively, a Syndicator could standardize and
automate these terms.

ICE: Full ICE Specification

 6

2.2 Syndicator and Subscriber Set up a
Subscription
Once the business agreement is in place, ICE comes into play as Best Code and Tech
News start exchanging ICE messages to establish a subscription and begin content
delivery.

2.2.1 Subscriber Receives Packages of
Subscription Offers
In order to view a catalog of subscription offers, Tech News goes to the website of Best
Code where the ICE Syndicator’s end point is listed. The Subscriber may also use the
discovery mechanism of Universal Description, Discovery, and Integration (UDDI) to
find the Syndicator’s end point. UDDI represents a set of protocols and a public
directory for the registration and lookup of web services specified by UDDI.org. The
Subscriber then requests a package of subscription offers using <icedel:get-
packages><icedel:get-package. By convention, the subscription with the
subscription-id=”1” returns a Syndicator’s catalog of subscription offers.

2.2.2 Subscriber Sends a Request to Subscribe to
the Offer
Tech News thinks the press releases are exciting stuff and promptly asks to sign up for
the subscription offer. It agrees to pull the content from Best Code’s site.

2.2.3 Syndicator Accepts Request and Responds
with Subscription Message
Best Code indicates that it has issued a subscription for Tech News by returning the
<icesub:subscription message. Best Code gives Tech News a unique subscription-id
number and also returns the details of the offer in order to confirm the delivery method.

2.3 Subscriber Receives Content
Once the subscription is set up, Tech News is ready to receive content. Tech News starts
by asking for new content. Best Code has chosen to take advantage of the Full ICE
incremental update capability. This means that the updates contain only changes to the
content in the subscription. These changes can add new content and can also include
requests to remove outdated content. In this way, Best Code can control the precise

ICE: Full ICE Specification

 7

content for that subscription on the Tech News site. Together with the actual content, the
messages may also specify other subscription parameters such as effective date and
expiration date.

2.3.1 Subscriber Requests Initial Subscription
Content
Tech News uses <icedel:get-package to ask for subscription content. The current-
state="ICE-INITIAL" indicates that this is an initial request for this subscription, which
alerts Best Code to download the full content.

2.3.2 Syndicator Responds with Full Content of
Subscription
Now Best Code delivers the content of its subscription, consisting of an ICE package
with a press release and a video file. The press release is part of the package. It is the
content of an ICE item element. The video file, however, is not actually in the package.
Instead, its location is given in the URL attribute of an ICE <icedel:item-ref element.
This serves as a pointer to the content and is an alternative to sending the content within
the ICE message.
The ICE package element also conveys other information. For example,
editable="true" gives Tech News permission to edit the content, while new-
state="2" establishes the state of the subscription. The next time Tech News requests
content, it will receive only content added or changed since this delivery, instead of
receiving the entire content load all over again.

2.3.3 Subscriber Confirms Delivery
If requested by the Syndicator, the Subscriber will return confirmation of content delivery
each time content is updated with the <icedel:package-confirmations message.

2.3.4 Variations on the Full ICE Scenario
Figure 2.1 shows the Full ICE subscription model. Note that an ICE subscription always
begins with an out-of-bank business agreement between the Syndicator and the
Subscriber. Several steps within the subscription model are optional, depending upon the
business agreement. See steps marked with dotted lines in Figure 2.1. For example, the
subscription might be initiated without the use of a catalog of offers. In this case the
Syndicator can simply issues an <icesub:subscription message, provide a unique
subscription identifier and begin delivering content.

ICE: Full ICE Specification

 8

3. Transport and Messaging
Two entities are involved in ICE transport and messaging. The Syndicator produces
content that is delivered to Subscribers. The philosophy behind Full ICE is to enable
syndication as a Web service. A Full ICE implementation implements all the features of
the ICE 2.0 specification and supports SOAP transport bindings. Full ICE requiresthat
the Syndicator and the Subscriber will establish a “listener” to receive messages and that
either side will be able to request/respond and send/receive.

3.1 SOAP Binding with SOAP Request
Respond Message Pattern
Because Full ICE supports SOAP transport bindings, two WSDL scripts are included in
the ICE 2.0 Specification. These scripts define the transport for the Full ICE Syndicator
and for the Full ICE Subscriber. The WSDL scripts can be found, in their entirety in
ICE: Schemas and Scripts.

<!-- SOAP Binding -->
 <binding name="ice-syndicator-full-binding"
 type="tns:ice-syndicator-full-portType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
<operation>
 OPERATIONS GO HERE
</operation>. . .
 </binding>

3.2 Integrated ICE/SOAP Message
As was discussed in ICE 2.0 Primer, ICE was specifically designed to function as a Web
service and to take advantage of SOAP as a messaging protocol. The ICE message
header was designed to be carried within the SOAP header and the ICE delivery and
subscription mechanisms were designed to be enclosed in the SOAP body.

ICE: Full ICE Specification

 9

4. Subscription Management
Basic ICE does not support subscription management. Only with Full ICE conformance
may a Syndicator manage the subscriptions and data feeds to individual subscribers. Of
course, Full ICE Syndicators may also provide public syndication feeds that are freely
available to all Subscribers. But Full ICE was designed to support the business
management of content syndication.

4.1 Subscription Establishment Overview
Subscription relationships in ICE usually begin with a request by the Subscriber to obtain
a catalog of subscription offers from the Syndicator. As already described, prior to the
Subscriber making this request, the Subscriber and the Syndicator have already engaged
in discussions regarding licensing terms, payment options, and other business
considerations. This happens outside of the ICE protocol. Once the parties agree that they
wish to have a content exchange relationship, the ICE process begins.
A typical sequence of events is:

1. A user (technical manager, engineer, etc.) at the Syndicator site creates a new
Subscriber account using the ICE software on the Syndicator's system. This
operation is not defined by the protocol; it is a property of the tools used by the
Syndicator.

2. The Syndicator tells the Subscriber what URL to use for ICE communication. It is
likely that this URL will be under access control, and the Syndicator will
communicate the necessary authentication data to the Subscriber using an out-of-
band mechanism.

3. ICE protocol operations are now ready to begin: the Subscriber will authenticate
(if necessary) to the given URL and issue the first ICE request: a <icedel:get-
packages><icedel:get-package subscription-id=”1”> request for the
package containing the catalog of offers.

4. The Syndicator will return a package containing offers.
5. The Subscriber issues a subscription request for an offer using the

<icesub:subscribe message
6. The Syndicator responds with the <icesub:subscription message indicating

that the subscription is established and packages can begin to be exchanged.

4.2 Get Package of Offers
The first step in the establishment of a subscription is the request from the Subscriber for
a package containing a package of offers. This request is initiated by the <icedel:get-
package message with the subscription-id=”1” that is universally known as a

ICE: Full ICE Specification

 10

package that contains offers available from the Syndicator. See Figure 4.1. Change to
get-package as the root!

Figure 4.1 Get-package Request Structure

An example of such a request is shown below in its complete ICE/SOAP form:
<?xml version="1.0" ?>
<env:Envelope xmlns:env=”http://www.w3.org/2002/12/soap-
envelope”>
 <env:Header>
<icemes:Header
 xmlns:icedel=http://icestandard.org/ICE/V20/message
 timestamp=”2003-03-03T00:00:00” message-id=”m0056”>
 <icemes:sender name=”mycompany”
role=”http://icestandard.org//role/subscriber”
sender-id=”http://www.xxyz.org”/>
</icemes:Header>
 </env:Header>
 <env:Body>
 <icedel:get-package
 xmlns:icedel="http://icestandard.org/ICE/V20/delivery"
 subscription-id="1"/>
 </env:Body>
<env:Envelope>

4.3 Offers
The structure of an offer is shown in Figure 4.2. There are numerous attributes on offer.
It is made up of optional <icesub:content-metadata, <icesub:offer-metadata,
<icesub:description, followed by a required <icesub:delivery-policy> that can be
followed by an optional <icesub:business-term, one or more <icesub:required-
extension and other content from the Syndicator’s own schemas (#wildCard).

ICE: Full ICE Specification

 11

Figure 4.2 ICE Offer Structure

The element <icesub:offer is defined as the complex type offerType as shown in the
following fragment of the XML schema:

<xs:element name = "offer" type = "offerType"/>
<xs:complexType name = "offerType">
 <xs:sequence>
 <xs:element name = "content-metadata"
 type = "content-metadataType" minOccurs = "0"/>
 <xs:element name = "offer-metadata"
 type = "offer-metadataType" minOccurs = "0"/>
 <xs:element name = "description"
 type = "descriptionType" minOccurs = "0"/>
 <xs:element name = "delivery-policy"
 type = "delivery-policyType"/>
 <xs:element name = "business-term"
 type = "business-termType" minOccurs = "0"
 maxOccurs = "unbounded"/>
 <xs:element name = "required-extension"
 minOccurs = "0" maxOccurs = "unbounded">
<xs:complexType>
 <xs:complexContent>
 <xs:extension base = "required-extensionType">
 <xs:attribute name = "extension-type"
 use = "required" type = "xs:anyURI"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name = "offer-id" use = "required"
 type = "xs:token"/>
 <xs:attribute name = "name" type = "xs:token"/>
 <xs:attribute name = "valid-after" type = "xs:dateTime"/>

ICE: Full ICE Specification

 12

 <xs:attribute name = "expiration-date"
 type = "xs:dateTime"/>
 <xs:attribute name = "full-ice" default = "false"
 type = "xs:boolean"/>
 <xs:anyAttribute namespace = "##other"
 processContents = "lax"/>
</xs:complexType>

4.4 Offer Attributes
An <icesub:offer has the following attributes:

• offer-id
Required. This is a string. It is an identifier thatMUST be unique across all
catalog offers between a Syndicator and Subscriber. Its function is to clearly
identify this offer from all other catalog offers made by a Syndicator to a
Subscriber.

• name
Optional. This is a string. It is a name that may be used to distinguish
subscriptions and offers from other subscriptions or offers. This is provided for
use by the syndicator or subscriber and has no defined ICE semantics. Its intended
use is to provide a readable short description of the offer such as, "Julia Child's
Contemporary French Cooking Column".

• full-ice
Default. This is Boolean. The default is set to ”false” for Basic ICE.

• valid-after
Optional. This attribute has a dateType datatype. It is used to specify a date
when the offer becomes valid and may be accepted.

• expiration-date
Optional. This attribute has a dateType datatype. It is used to specify a date
when the offer expires and is no longer valid.

4.5 Offer Elements
An offer is made up of a optional elements <icesub:content-metadata,
<icesub:offer-metadata, <icesub:description, <icesub:delivery-policy
<icesub:business-term , <icesub:required-extensions and allows for the
inclusion of content from the Syndicator’s own schema (#wildCard).

4.5.1 Content Metadata
Content-metadata is an element that provides the means for additional metadata that
applies to all of the content being offered. The structure of this element is shown in
Figure 4.3

ICE: Full ICE Specification

 13

Figure 4.3 Content-metadata Structure

The <icesub:content-metadata element provides a mechanism to include additional
metadata about the content. The metadata can be entered in the text field or other content
metadata from the Syndicator’s own schemas (#wildCard) can be included. Note that
the xml:lang= attribute enables the specification of language used in the <icesub:text
element.In addition, a number of optional metadata fields are provided as content-
metadata attributes by the ICE 2.0 specification.
The attributes of <icesub:content-metadata include:

• atomic-use
Optional. This is a Boolean. If “true”, indicates that all information in the
subscription must be used together, or not used at all. If “false”, or unspecified,
then the Subscriber is permitted to use subsets of the data in any way they want
(and as permitted by the licensing terms, of course). This flag is meant to be
useful as a hint/reminder displayed in a Subscribers ICE tool; ICE cannot enforce
it (and, the use of lower case "must" in the above description is intentional; there
is no protocol requirement here).

• ip-status
Optional. This is a string describing the intellectual property-rights status of the
content. ICE cannot enforce any of these semantics; rather, the intent is that this
attribute allows the Syndicator to communicate useful information to the
Subscriber ICE tool, which will ideally display this information in some useful
presentation form. This attribute MAY contain any arbitrary string determined by
the Syndicator. ICE defines the following specific string values, and Syndicators
SHOULD use them as appropriate:

 PUBLIC-DOMAIN
The content has no licensing restrictions, whatsoever.

 FREE-WITH-ACK
The content has no licensing restrictions beyond a requirement to display
an acknowledgement of the content source.

 SEE-LICENSE
The content has licensing restrictions as already agreed to in an existing
licensing agreement. This is meant to convey the default case.

 SEVERE-RESTRICTIONS
The content has licensing restrictions that are worthy of special attention.
NOTE: it is the intent that this flag would not be used routinely by
Syndicators. The intent is that an ICE tool might "red flag" content

ICE: Full ICE Specification

 14

marked with this attribute and bring it specially to the attention of an
administrator on the Subscriber site (this makes more sense when this
attribute is attached to package items).

 CONFIDENTIAL
The content is confidential and must be protected specially.

• license
Optional. Token indicating the license for the content.

• rights-holder
Optional. String describing the original source of the syndication rights.

• show-credit
Optional. This is a Boolean. If true, indicates that the Subscriber is explicitly
expected to acknowledge the source of the data.

• editable
Optional. This is a Boolean. If true, indicates that the Subscriber may edit/alter
the content before using it. If false, or unspecified, the Subscriber is expected to
use the content without any alteration. It has the same "hint" semantics as atomic-
use.

• item-type
Optional. This attribute is used to specify the type of content item that is being
offered. The datatype is a URI that specifies the content type. This attribute was
designed to indicate the datatype of the content of the subscription so that the
subscriber will know whether they can process the content of the subscription
being offered.

This is an example of <icesub:content-metadata:

<icesub:content-metadata
 atomic-use="true"
 editable="false"
 ip-status="Free With Acknoledgement"
 rights-holder="Oracle Corporation, 2003"
 show-credit="true"
 item-type="http://icestandard.org/ICE/V20/item-
type/rss2.0"/>

NOTE: The item-type attribute in this example is used to
specify the “flavor” of RSS being used in the content.

4.5.2 Offer Metadata
Offer-metadata is an element that provides the means for additional metadata to be
communicated between the parties specific to an offer. The structure of this element is
shown in Figure 4.4.

ICE: Full ICE Specification

 15

Figure 4.4 Offer Metadata Structure

The <icesub:offer-metadata element provides a mechanism to include additional
metadata about the offer. The metadata can be entered in the text field or other content
metadata from the Syndicator’s own schemas (#wildCard) can be included.

4.5.3 Description
This element is a text field and facilitates the entry of a description of the offer. This
simple element is shown in Figure 4.5. Note that the xml:lang= attribute on
<icesub:text enables the specification of language for the text field within
<icesub:description.

Figure 4.5 Description Element Structure

4.5.4 Delivery Policy
Each subscription offer has one delivery-policy. The delivery policy can determine, for
example, the times and dates during which packages can be delivered (push) or pulled for
a given subscription. Each delivery policy has one or more delivery rules.

The subscriber must accept the delivery policy within an offer and all
(required=”true”) delivery rules within a delivery policy. They can select among
optional(required=”false”) delivery rules, however.

See Figure 4.6 for the delivery-policy structure.

Figure 4.6 Delivery-policy Structure

ICE: Full ICE Specification

 16

The <icesub:delivery-policy element is defined as the type delivery-policyType.
This is defined by the following XML schema fragment:

<xs:complexType name = "delivery-policyType">
 <xs:sequence>
<xs:element name = "delivery-rule"
 type = "delivery-ruleType" maxOccurs = "unbounded"/>
<xs:any namespace = "##other"
 processContents = "lax" minOccurs = "0"
 maxOccurs = "unbounded"/>
 </xs:sequence>
 <xs:attribute name = “startdate” type =
“icestd:dateTime”/>
 <xs:attribute name = “stopdate” type =
“icestd:dateTime”/>
 <xs:attribute name = "quantity" type = "xs:integer"/>
 <xs:attribute name = "expiration-priority"
 default = "first">
 <xs:simpleType>
<xs:restriction base = "xs:NMTOKEN">
 <xs:enumeration value = "first"/>
 <xs:enumeration value = "time"/>
 <xs:enumeration value = "quantity"/>
 <xs:enumeration value = "last"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace = "##other"
 processContents = "lax"/>
</xs:complexType>

The attributes for <icesub:delivery-policy are:

• startdate
Optional. Datatype is icesdt:dateTime as defined in the ICE datatype schema.
This attribute specifies the date and time on which the delivery schedule will start
to apply. If this attribute is omitted, the schedule will start immediately.

• stopdate
Optional. Datatype is icesdt:dateTime as defined in the ICE datatype schema.
This attribute specifies the date and time on which the delivery schedule expires.
If this attribute is omitted, the schedule never expires (unless superseded in the
future).

• quantity
Optional. Datatype is an integer. This attribute specifies the quantity of updates
in the subscription

• expiration-priority
Default. This attribute specifies the expiration priority. Values are first,
last, time, and quantity. If the value is "first", then the subscription
terminates when the first of the quantity or the expiration date is reached. If the
value is "last", then the subscription terminates when both the quantity and the
expiration date are reached. If the value is "time", then the subscription

ICE: Full ICE Specification

 17

terminates when the expiration date is reached. If the value is "quantity" then
the subscription terminates when the quantity is reached. Note that expiration-
priority has no effect unless both expiration-date and quantity are specified. The
default is first.

NOTE: The multiple delivery-rules in a delivery-policy are
conceptually joined with "OR" (not "AND"). In other
words, the valid delivery times are the union of all the
times defined by each rule in the delivery policy.

4.5.4.1 Delivery Rule
Each <icesub:delivery-policy is made up of one or more delivery rules. The
<icesub:delivery-rule can define a window of time during which deliveries can be
performed along with other delivery options. Each delivery-rule has a mode of either a
push or pull, can define when deliveries can be performed, a start and ending time for the
update window, the frequency with which updates can be performed, the count of the
number of updates that can be performed and the transport and packaging. In addition,
attributes on the delivery rule specify whether updates will be full or incremental,
whether the delivery of updates must be confirmed and whether this delivery rule is
required. You can see the makeup of a <icesub:delivery-rule in the Figure 4.7:

Figure 4.7 ICE Delivery-rule Structure

The <icesub:delivery-rule element is defined as the type delivery-ruleType and is
described by this XML Schema fragment:

<xs:complexType name = "delivery-ruleType">
 <xs:sequence>
 <xs:element name = "transport"
 maxOccurs = "unbounded" minOccurs = "1"
 type = "transportType"/>
<xs:any namespace = "##local ##other"
processContents = "lax" minOccurs = "0"
maxOccurs = "unbounded"/>
 </xs:sequence>
 <xs:attribute name = "mode" default = "pull">
 <xs:simpleType>
<xs:restriction base = "xs:NMTOKEN">
 <xs:enumeration value = "pull"/>
 <xs:enumeration value = "push"/>
</xs:restriction>
 </xs:simpleType>

ICE: Full ICE Specification

 18

 </xs:attribute>
 <xs:attribute name = "monthday" type = "xs:NMTOKENS"/>
 <xs:attribute name = "weekday" type = "xs:NMTOKENS"/>
 <xs:attribute name = "starttime" type = "icesdt:time"/>
 <xs:attribute name = "duration" type =
"icesdt:duration"/>
 <xs:attribute name = "min-num-updates"
type = "xs:integer"/>
 <xs:attribute name = "max-num-updates"
type = "xs:integer"/>
 <xs:attribute name = "incremental-update"
type = "xs:boolean" default = "false"/>
 <xs:attribute name = "required" type = "xs:boolean"
default = "true"/>
 <xs:attribute name = "confirmation" default = "false"
type = "xs:boolean"/>
 <xs:anyAttribute namespace = "##other"
processContents = "lax"/>
</xs:complexType>

Attributes on <icesub:delivery-rule include:

• mode
Default. This attribute specifies the mode for the delivery. Options are push from
Syndicator to Subscriber and pull by Subscriber from Syndicator, with a default
of “pull” to support Basic ICE.

• incremental-update
Default. This attribute specifies the update policy for the offer. The values are
Boolean with “false” as the update default.

• Confirmation
Default. This attribute specifies whether the Subscriber must confirm delivery of
updates.The values are Boolean with “false” as the update default.

• required
Default. This attribute specifies whether this delivery rule is required in order for
the offer to be accepted. The values are Boolean with the default as “true”. For
example if a Syndicator provides a variety of delivery rules for the Subscriber to
pick from, these rules would be optional.

• weekday
Optional. This token indicates the day of the week on which delivery is
scheduled .

• monthday
Optional. This token indicates the day of the month on which delivery is
scheduled.

• duration
Optional. Datatype icesdt:duration as defined in the ICE datatype schema.
This attribute specifies the duration of the window that starts at start-time
everyday. .

ICE: Full ICE Specification

 19

• min-num-updates
Optional. This attribute specifies the minimum number of updates. The datatype
is an integer.

• max-num-updates
Optional. This attribute specifies the maximum number of updates. The datatype
is an integer.

4.5.4.1.1 Transport

The <icesub:delivery-rule is made up of one or more <icesub:transport.
Transports are specified when the Syndicator makes an offer. This element provides a
mechanism for the Syndicator to indicate the possible delivery transports for the
<icesub:offer. You can see the makeup of a <icesub:transport in the Figure 4.8.

Figure 4.8 Transport Structure

The <icesub: transport has two attributes:
• protocol

Default. This attribute specifies the transport protocol. It has pre-enumerated
values of “http:get” “ftp” “mailto” and “soap” with the default set to
“http:get” for Basic ICE.

• packaging-style
Default. This attribute specifies the packaging style for the offer. It has pre-
enumerated values of “ice” and “raw” with the default set to “ice” for Basic
ICE.

4.5.4.1.2 Delivery-Endpoint

The <icesub:transport is made up of an optional delivery endpoint. See Figure 4.9. If the
Syndicator is offering content in “pull” mode, the delivery endpoint can be specified by
using <icesub:delivery-endpoint. If the Syndicator is offering content in “push”
mode, the Subscriber would use this elements within the <icesub:subscribe message to
indicate the endpoint for the push delivery.

Figure 4.9 Delivery-endpoint Structure

ICE: Full ICE Specification

 20

The <icesub:delivery-endpoint has 4 attributes. These include:
• url

Required. This attribute specifies the URL for push delivery. The datatype is
anyURI.

• username
Optional. This attribute specifies an optional username that may be required to
access URL for push delivery.

• password
Optional. This attribute specifies an optional password that may be required to
access URL for push delivery.

• user-authentication
Optional. This attribute specifies the optional user authentication scheme. It is a
string with enumerated values of “basic” and “digest”. There is no default

4.5.4.2 Syndicator Offer Specifications by Mode
One of the most important specifications within the delivery rule of an offer is the
specification of delivery mode= along with the <icesub:syndicator-transports. The
requirement to specify syndicator transports delivery settings varies by delivery mode.
Conditions such as this cannot be expressed by XSD. The following table provides
required specifications based on delivery mode.
Mode Syndicator Protocol Syndicator Delivery

Packaging Style
Delivery Endpoint

Pull Default. If not specified,
the default protocol will be
“http:get”

Default. If not specified,
Syndicator packaging is
assumed to be ”ice”

Optional. If not specified
it is assumed to be the
same endpoint from
where the catalog was
pulled

Push Required. For push
delivery a specific protocol
should be indicated
because http:get is not a
push protocol

Required. For push delivery
a specific protocol should be
indicated

Not Allowed. For push
delivery, only the
Subscriber delivery
endpoint is valid

ICE: Full ICE Specification

 21

4.5.4.3 Example Delivery Rules
In this section we will look at a number of offers with delivery rules within delivery
policies. The intent is to provide examples of delivery rules with different modes and
Syndicator specifications.

4.5.4.2.1 Simple “Pull” Delivery Rule

First lets look at an offer with a <icesub:delivery-rule containing a simple “pull”.
Notice that in this simple rule, everything is left to default including the mode on the
delivery rule. No transport protocol or packaging-style is provided. Remember that the
assumption is that the protocol will be “http:get” and the packaging will be “ice”. The
pull will be made from the location specified by the <icesub:delivery-endpoint.

<icedel:package
 xmlns:icedel="http://icestandard.org/ICE/V20/delivery"
 new-state="ICE-ANY"
 old-state="ICE-ANY"
 fullupdate="true"
 package-id="1"
 subscription-id="1">
 <icedel:add>
 <icedel:metadata item-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type="text/xml"/>
<icedel:item>
 <icesub:offer
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id="offID2"
name="offName2">
 <icesub:description>
 headlines
 </icesub:description>
 <icesub:delivery-policy>
 <icesub:delivery-rule>
 <icesub:transport>
 <icesub:delivery-endpoint
 url=”http://www.iceserver.com/gp/08292BC” >
 </icesub:transport>
 </icesub:delivery-rule>
 </icesub:delivery-policy>
 </icesub:offer>
</icedel:item>
 </icedel:add>
</icedel:package>

ICE: Full ICE Specification

 22

NOTE: You can tell this ICE package contains a catalog
offer in several ways. First notice that the subscription-
id on the package equals “1”. This is the identifier of a
subscription catalog. Also notice that the
<icedel:metadata indicates the item type is offer. And
finally the offer is inside this package.

4.5.4.2.2 “Pull” Delivery Rule with Syndicator Delivery
Settings

In this example, the delivery rule specifies a pull delivery. But rather than using the
defaults, this Syndicator is specifying transport. In this case the Syndicator provides a
delivery endpoint for content to be pulled from. The Syndicator also indicates that the
delivery packaging style will “ice”.

<icedel:package
 xmlns:icedel="http://icestandard.org/ICE/V20/delivery"
 new-state="ICE-ANY"
 old-state="ICE-ANY"
 fullupdate="true"
 package-id="1"
 subscription-id="1">
 <icedel:add>
 <icedel:metadata item-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type="text/xml"/>
<icedel:item>
 <icesub:offer
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id="offID2"
name="offName2">
 <icesub:description>
 headlines
 </icesub:description>
 <icesub:delivery-policy quantity="100"
expiration-priority="quantity">
 <icesub:delivery-rule mode="pull"/>
 <icesub:transport
protocol=”http:get” packaging-style=”ice”>
<icesub:delivery-endpoint
 url="http://iceserver.com/gp/08292BC"/>
 </icesub:transport>
</icesub:delivery-rule>
 </icesub:delivery-policy>
 </icesub:offer>
</icedel:item>
 </icedel:add>
</icedel:package>

ICE: Full ICE Specification

 23

NOTE: The <icesub:delivery-policy indicates that this
subscription provides for a quantity of 100 feeds. In this
case, the subscription expires when the quantity has been
filled. Also note that no times or durations are placed on
this subscription.

4.5.4.2.3 Single “Push” Delivery Rule

Instead of specifying that delivery will be by “pull”, the Syndicator may indicate a
“push” delivery. In this case the Syndicator provides protocol and packaging
information but does not provide <icesub:delivery-endpoint as push endpoints have
to be provided by the Subscriber!

<icedel:package
 xmlns:icedel="http://icestandard.org/ICE/V20/delivery"
 new-state="ICE-ANY"
 old-state="ICE-ANY"
 fullupdate="true"
 package-id="1"
 subscription-id="1">
 <icedel:add>
 <icedel:metadata item-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type="text/xml"/>
<icedel:item>
 <icesub:offer
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id="offID2"
name="offName2">
 <icesub:description>
 headlines
 </icesub:description>
 <icesub:delivery-policy quantity="100"
expiration-priority="quantity">
 <icesub:delivery-rule mode="push">
 <icesub:transport protocol="soap"
 packaging-style=”ice”/>
 <icesub:transport protocol=”soap”
 packaging-style=”raw”/>
 <icesub:transport protocol=”ftp”
 packaging-style=”ice”/>
 <icesub:transport protocol=”ftp”
 packaging-style=”raw”/>
 </icesub:delivery-rule>
 </icesub:delivery-policy>
 </icesub:offer>
</icedel:item>
 </icedel:add>
</icedel:package>

ICE: Full ICE Specification

 24

NOTE: In this example the Syndicator provided four
transport protocols/packaging style options. The
Subscriber can select a preferred transport protocol and
packaging style pair when subscribing to this offer.

4.5.4.2.4 Combined “Pull” and “Push” Delivery Rule

A Syndicator may specify that delivery will be by “pull” and “push” delivery. In this
case the Subscriber must be able to accept both delivery rules (which default to required)
in order to subscribe to the offer. The Subscriber can, however, choose a preferred
transport within each rule.

<icedel:package
 xmlns:icedel="http://icestandard.org/ICE/V20/delivery"
 new-state="ICE-ANY"
 old-state="ICE-ANY"
 fullupdate="true"
 package-id="1"
 subscription-id="1">
 <icedel:add>
 <icedel:metadata item-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type="text/xml"/>
 <icedel:item>
<icesub:offer
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id="offID2"
name="offName2">
 <icesub:description>
 headlines
 </icesub:description>
 <icesub:delivery-policy quantity="100"
expiration-priority="quantity">
 <icesub:delivery-rule mode="pull">
 <icesub:transport protocol=”http:get”
 packaging-style=”ice”>
 <icesub:delivery-endpoint
url="http://iceserver.com/ice/08292BC82302427"/>
 </icesub:transport>
 <icesub:transport protocol=”http:get”
 packaging-style=”raw”>
 <icesub:delivery-endpoint
url="http://iceserver.com/raw/08292BC82302427"/>
 </icesub:transport>
 </icesub:delivery-rule>
 <icesub:delivery-rule mode="push">
 <icesub:transport>
 <icesub:transport protocol=”soap”
 packaging-style=”ice”/>
 <icesub:transport protocol=”mailto”
 packaging-style=”ice”/>
 </icesub:delivery-rule>
 </icesub:delivery-policy>
 </icesub:offer>

ICE: Full ICE Specification

 25

</icedel:item>
 </icedel:add>
</icedel:package>

NOTE: Because the “required” attribute on delivery rule
is left to default to “true” all delivery rules within this
delivery policy must be accepted in order for the Subscriber
to subscribe to the offer.

4.5.5 Offer Business Term
Another component of the <icesub:offer is the optional <icesub:business-term
element. Business terms provide the means for additional content and parameters to be
communicated between the parties; both for specific subscriptions as well as for more
general properties of the relationship. You can see the structure of this element in Figure
4.10:

Figure 4.10 ICE Business-term Structure

The <icesub:business-term element is defined as the type business-termType and is
described by this XML Schema fragment:

<xs:element name = "business-term" type = "business-
termType" minOccurs = "0" maxOccurs = "unbounded"/>
 <xs:complexType name = "business-termType" mixed =
"true">
 <xs:sequence>
<xs:element name = "text" type = "icesdt:textType"
minOccurs = "0" maxOccurs = "unbounded"/>
<xs:any namespace = "##other" processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>
 </xs:sequence>
 <xs:attribute name = "type" use = "required">
<xs:simpleType>
 <xs:restriction base = "xs:NMTOKEN">
 <xs:enumeration value = "credit"/>
 <xs:enumeration value = "licensing"/>
 <xs:enumeration value = "payment"/>
 <xs:enumeration value = "reporting"/>
</xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name = "url" type = "xs:anyURI"/>
 <xs:attribute name = "name" type = "xs:token"/>

ICE: Full ICE Specification

 26

 <xs:attribute name = "usage-required" type =
"xs:boolean"/>
 <xs:attribute name = "business-term-id" type =
"xs:string"/>
 <xs:anyAttribute namespace = "##other" processContents =
"lax"/>
</xs:complexType>

 The attributes of <icesub:business-term are:

• type
Required. String identifying the particular class of business terms. All of these
terms are plain text descriptions. ICE makes no attempt to programmatically
explain licensing agreements; rather, ICE simply provides a transport mechanism
allowing user interfaces to easily locate, manage, and display electronic copies of
license agreements presumably executed in the traditional way on paper. The type
is one of the following values:

 type
attribute
value

 Attribute "type" Meaning

credit

Refers to the type of acknowledgement required when using
the content. Note that ICE makes no further requirements
about credit. The party making the offer (usually a syndicator)
MAY choose to provide parameters in this category that MAY
or MAY NOT be negotiable.

licensing

Refers to the general terms of licensing. Note that ICE makes
no further requirements about licensing. The party making
the offer (usually a syndicator) MAY choose to provide
parameters in this category that MAY or MAY NOT be
negotiable.

payment

Payment refers to the cost and payment terms expected
when using the content. Note that ICE makes no further
requirements about payment. The party making the offer
(usually a syndicator) MAY choose to provide parameters in
this category that MAY or MAY NOT be negotiable.

reporting

Refers to the end-user usage statistics expected when
content is used. Note that ICE makes no further
requirements about reporting (but see logging). The party
making the offer (usually a syndicator) MAY choose to
provide parameters in this category that MAY or MAY NOT
be negotiable.

• url
Optional. A url. URL has no protocol-defined semantics other than to be made
available to the ICE application processor. The intent is that this URL provides
the business terms.

• name
Optional. This name MAY be used by an ICE application processor to identify

ICE: Full ICE Specification

 27

the specific business term. "name" has no protocol defined semantics other than to
be made available to the ICE application processor.

• usage-required
Optional. This attribute specifies whether the business term usage is required.
This is a Boolean. If true, indicates usage is required and false indicates it is
not required.

• business-term-id
Optional. A subscription unique business term identifier that ICE uses to
distinguish the business term from all other business terms in the subscription.

4.6 Subscribing
A Subscriber uses the <icesub:subscribe containing an <icesub:offer to establish a
subscription. Typically, a Subscriber will use <icedel:get-packages/<icedel:get-
package to get an initial package of offers, take one of the offers from that catalog of
offers and send it back to the Syndicator in an <icesub:subscribe request.

4.6.1 Subscribe Element
The subscribe message is made up of an offer with parameters. See Figure 4.11.

Figure 4.11 The structure of the subscribe message

The <icesub:subscribe message can carry only a single offer. This means that there is
a single offer per subscription. The <icesub:offer element is described in 4.3 Offers.

In addition to the offer, the <icesub:subscribe message may contain the
<icesub:parameters element. This element enables the Subscriber to send further
parameters at subscription time to specify parameters. These parameters are not defined
within an ICE 2.0 namespace, but rather must come from a Subscriber namespace.

ICE: Full ICE Specification

 28

The structure of the <icesub:subscribe message is shown in the XML schema
fragment:

<xs:element name = "subscribe">
 <xs:complexType>
<xs:sequence>
 <xs:element name = "offer" type = "offerType" minOccurs =
"0"/>
 <xs:element ref = "icesdt:parameters" minOccurs = "0"/>
</xs:sequence>
<xs:attribute name = "subscription-name" type =
"xs:token"/>
<xs:attribute name = "offer-id" type = "xs:token"/>
<xs:anyAttribute namespace = "##other" processContents =
"lax"/>
 </xs:complexType>
</xs:element>

The <icesub:subscribe message has a two attributes:

• subscription-name
Optional. This attribute specifies the name of the product being subscribed to.

• offer-id
Optional. This attribute specifies the id of the offer being subscribed to. If this
attribute is used, without an echo of the <icesub:offer, it means that the offer was
accepted just as it was presented.

4.6.1.1 Subscribing Directly to an Offer
If an <icesub:subscribe is returned with the offer-id attribute but without an echo of
the <icesub:offer, it means that the offer was accepted and subscribed to just as it was
presented. The offer-id attribute was put on <icesub:subscribe specifically to allow
for this short cut.

See how this is done in the following example:

<icesub:subscribe subscription-name="RSS Headlines"
 offer-id="offID2"/>

NOTE: The offer-id can only be used to subscribe to
offers that are “pull” only. If an offer has “push” delivery
rules, the Subscriber must return the offer with delivery
endpoints for the push specified.

4.6.1.2 Subscribing with Subscriber Parameters
Returned
If an offer has “push” delivery rules, the Subscriber must return the offer with delivery
endpoints for the push specified. The Subscriber may also have been given choices of

ICE: Full ICE Specification

 29

delivery style selections that must be specified in order for content delivery to commence.
In both these cases, the Subscriber must return the <icesub:offer within the
<icesub:subscribe.

4.6.1.2.1 Subscriber Transport

The Subscriber returns transport for push deliveries back to the Syndicator within the
offer that is returned in the <icesub:subscribe message. For information on
<icesub:transport.

4.6.1.2.2 Example Subscribe Message with Subscriber
Parameters

This example shows an <icesub:subscribe message in response to the offer shown in
4.5.4.2.4 Combined “Pull” and “Push” Delivery Rule. In this example, the Subscriber
sends the offer within the <icesub:subscribe message. Note that the Subscriber has
selected one <icesub:transport option. Also <icesub:delivery-endpoint has been
provided by the Subscriber so the Syndicator will know where the push delivery will be
made.

<icesub:subscribe>
<icesub:offer
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id="offID2"
name="offName2">
 <icesub:description>
 headlines
 </icesub:description>
 <icesub:delivery-policy quantity="100"
expiration-priority="quantity">
 <icesub:delivery-rule mode="push">
 <icesub:transport protocol="soap"
 packaging-style=”ice”>
<icesub:delivery-endpoint
 url="http://sub.com/push.jsp" username="foo"
 password="foofoo"/>
 </icesub:transport>
 </icesub:delivery-rule>
 </icesub:delivery-policy>
</icesub:offer>
</icesub:subscribe>

4.6.2 Subscription Initiated
After the Subscriber returns the offer to the Syndicator within a <icesub:subscribe
message, the Syndicator can respond in one of two ways, depending upon whether the
subscription was accepted.

ICE: Full ICE Specification

 30

If the Syndicator accepts the subscribe request, the Syndicator responds with the
<icesub:subscription message shown in Figure 4.12.

Figure 4.12 Syndicator’s Subscription Response

The structure of the subscription message can be seen in this XML schema fragment:
<xs:element name = "subscription" type =
 "subscriptionType"/>
 <xs:complexType name = "subscriptionType">
 <xs:sequence>
<xs:element name = "offer" type = "offerType"/>
 <xs:any namespace = "##other" processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>
 </xs:sequence>
 <xs:attribute name = "subscription-id" use = "required"
type = "xs:token"/>
 <xs:attribute name = "subscription-name" type =
"xs:token"/>
 <xs:attribute name = "current-state" type =
"icesdt:package-sequence-stateType"/>
 <xs:attribute name = "quantity-remaining" type =
"xs:integer"/>
 <xs:anyAttribute namespace = "##other" processContents =
"lax"/>
</xs:complexType>

The <icesub:subscription element has several attributes:
• subscription-id

Required. This attribute specifies the unique identifier of the product being
subscribed to. The Syndicator provides a subscription-id when the subscription
begins.

• subscription-name
Optional. This attribute specifies the name of the product being subscribed to.

• current-state
Optional. This attribute specifies the current state of the subscription and is only
used when the <icesub:subscription is returned within an <ice:status . It is
datatype icesdt:package-sequence-stateType as defined in the ICE
simpledatatypes.xsd. Values include ICE-INITIAL and ICE-ANY.

• quantity-remaining
Optional. This attribute specifies the quantity of updates of the product being
subscribed to and is only used when the <icesub:subscription is returned
within an <ice:status. The datatype is an integer.

ICE: Full ICE Specification

 31

NOTE: The subscription does not have an offer-id as an
attribute. This means that even though the offer-id can be
used as a short-cut by the Subscriber when subscribing, the
Syndicator is forced to repeat the entire offer within the
subscription. This is a safeguard to ensure that the
Subscriber clearly understands the subscription and all
delivery policies at the time the subscription in initiated by
the Syndicator.

An example of the <icesub:subscription message is shown below. This is the
subscription that was established based on the example shown in 4.6.1.2.2 Example

Subscribe Message with Subscriber Parameters.

<icesub:subscription
 subscription-id="08292BC82302427F8CBC93342F931EC8"
 current-state="ICE-INITIAL"
 quantity-remaining="100">
<icesub:offer
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id="offID2" name="offName2">
 <icesub:description>
 headlines
 </icesub:description>
 <icesub:delivery-policy quantity="100"
expiration-priority="quantity">
 <icesub:delivery-rule mode="push">
 <icesub:transport protocol="soap"
 packaging-style=”ice”>
<icesub:delivery-endpoint
 url="http://sub.com/push.jsp" username="foo"
 password="foofoo"/>
 </icesub:transport>
 </icesub:delivery-rule>
 </icesub:delivery-policy>
</icesub:offer>
</icesub:subscription>

Note The subscription message is returned directly within
the SOAP body. Even though the original offer is sent
inside a package, the subscription reply is not.

4.6.3 Subscription Declined
If the Syndicator declines the subscription, the response is <icesub:subscription-
fault. The fault contains a fault code. One of the following fault codes is appropriate
for declining a subscription.

• 400 Generic request error
Generic status code indicating inability to comprehend the request. Usually, it is
better to send a more specific code if possible.

ICE: Full ICE Specification

 32

• 401 Incomplete/cannot parse
The request sent is severely garbled and cannot be parsed. Note that in most
cases, a message level error (301) might be more appropriate.

• 402 Not well formed XML
The request sent is recognizable as XML, but is not well formed per the definition
of XML. This is available as both a message level error and as a request level
(4xx) error. Whether a given implementation attempts to interpret not well formed
XML so as to generate request level (4xx) errors versus. Message level (3xx)
errors is a quality of implementation issue.

• 403 Validation failure
The request failed validation according to the Schema. This is available as both a
message level error and as a request level (4xx) error. Whether a given
implementation attempts to interpret not well formed XML so as to generate
request level (4xx) errors versus. Message level (3xx) errors is a quality of
implementation issue. Note that Receivers SHOULD perform validation on
incoming ICE messages, but are not required to. Senders MUST send only valid
ICE messages or they are in error; however, the ability to detect invalid messages
is a quality-of-implementation issue for the Receiver, and Senders MUST NOT
assume the Receiver will perform an XML validation on their messages.

• 422 Schedule violation
The subscribe request was made at an incorrect time such as after an offer has
expired or before it is valid.

• 440 Sorry
This indicates the Syndicator rejected the proposed subscription offer, but wishes
to extend additional offers.

4.6.4 ICE Subscription Fault
The <icesub:subscription-fault is returned when a subscription is declined. The
structure of the fault can be seen in Figure 4.13.

Figure 4.13 ICE Subscription Fault

ICE: Full ICE Specification

 33

The following is an example of a Syndicator declining a subscription:
<icesub:subscription-fault
 code="440">
<icesub:offer
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id="offID2" name="offName2">
 <icesub:description>
 headlines
 </icesub:description>
 <icesub:delivery-policy quantity="100"
expiration-priority="quantity">
 <icesub:delivery-rule mode="push">
 <icesub: transport protocol="soap"
 packaging-style=”ice”>
<icesub:delivery-endpoint
 url="http://sub.com/push.jsp" username="foo"
 password="foofoo"/>
 </icesub:transport>
 </icesub:delivery-rule>
 </icesub:delivery-policy>
</icesub:offer>

</icesub:subscription-fault>

ICE: Full ICE Specification

 34

5. Other Subscription Operations
In addition to providing the ability for the Subscriber to subscribe to an offer and for the
Syndicator to approve and manage that subscription, Full ICE provides for two other
important subscription management operations⎯ checking the status of a subscription
and cancellation of the subscription.

5.1 Get Status
ICE 2.0 provides the ability for the Subscriber to request the status of a subscription. The
structure of the <icesub:get-status message is shown in Figure 5.1.

Figure 5.1 Get-status Structure

NOTE: If the optional subscription-id is not provided, the
Syndicator is expected to respond with the status of each
subscription for the Subscriber.

The following example shows how the <icesub:get-status request is issued. Note
that the entire ICE/SOAP message is shown.

<?xml version="1.0" ?>
<env:Envelope xmlns:env='http://www.w3.org/2002/12/soap-
envelope'>
 <env:Header>
<icemes:Header timestamp=”2003-03-03” message-id=”m0056”>
 <icemes:Sender name=”mycompany”
 role=”http://icestandard.org//role/syndicator”
 sender-id=”http://www.xxyz.org”/>
 </icemes:Header>
 </env:Header>
 <env:Body>
<icesub:get-status subscription-id=”MC003”/>
 </env:Body>
<env:Envelope>

5.2 Status
ICE 2.0 provides the ability for the Syndicator to respond to the request from the
Subscriber for the status of a subscription. The structure of the <icesub:status
message is shown in Figure 5.2.

ICE: Full ICE Specification

 35

Figure 5.2 ICE Status Structure

The ICE Status response returns the subscriptionthat includes the current state of the
subscription and the quantity remaining in the subscription and the subscription-id..
From this information, the Subscriber can answer any question that prompted the
<icesub:get-status request.

5.3 Cancel
ICE 2.0 provides the ability for the Subscriber to cancel a subscription. The structure of
the <icesub:cancel message is shown in Figure 5.3.

Figure 5.3 ICE Cancel Structure

The Subscriber’s request to cancel a subscription simply includes the subscription-id for
the subscription being cancelled and a reason attribute. The xml:lang attribute enables
the Subscriber to specify the language for the reason text.
An example of an ICE cancel message is shown here:

<?xml version="1.0" ?>
<env:Envelope xmlns:env='http://www.w3.org/2002/12/soap-
envelope'>
 <env:Header>
<icemes:Header timestamp=”2003-03-03” message-id=”m0056”>
 <icemes:Sender name=”mycompany”
 role=”http://icestandard.org//role/syndicator”
 sender-id=”http://www.xxyz.org”/>
 </icemes:Header>
 </env:Header>
 <env:Body>
<icesub:cancel
 xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
 subscription-id="08292BC82302427F8CBC93342F931EC8">
 <icesub:reason xml:lang="en">
I'm tired of this content feed
 </icesub:reason>
</icesub:cancel>
</env:Body>
</env:Envelope>

ICE: Full ICE Specification

 36

5.4 Cancellation
ICE 2.0 provides the ability for the Syndicator to verify the cancellation of a subscription
requested by the Subscriber with the <icesub:cancel message. The structure for the
<icesub:cancellation response is shown in Figure 5.4.

Figure 5.4 ICE Cancellation Response Structure

The Cancellation response requires the Syndicator to provide the Subscriber with a
unique cancellation-id that can be used to verify the cancellation.
An example of an ICE cancellation response is shown here:

<?xml version="1.0" ?>
<env:Envelope xmlns:env='http://www.w3.org/2002/12/soap-
envelope'>
 <env:Header>
<icemes:Header timestamp=”2003-03-03” message-id=”m0056”>
 <icemes:Sender name=”mycompany”
 role=”http://icestandard.org//role/syndicator”
 sender-id=”http://www.xxyz.org”/>
 </icemes:Header>
 </env:Header>
 <env:Body>
<icesub:cancellation
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
subscription-id="08292BC82302427F8CBC93342F931EC8"
cancellation-id="C08292BC82302427F8CBC93342F931EC8"/>
</env:Body>
</env:Envelope>

ICE: Full ICE Specification

 37

6. Packages and Delivery
Full ICE, like Basic ICE, supports the delivery of packages. In Basic ICE, the delivery is
simply the act of the Syndicator placing the content in a SOAP/ICE XML document at
the URL specified in the offer. Full ICE enables the push or pull of content. The XML
definition for packages is found at http://www.icestandard.org/Spec/V20/schema/ice-
delivery.xsd.

The Full ICE package is made up of three elements. See Figure 6.1

Figure 6.1 ICE Package Structure

The formal definition of a package is expressed with the following XML schema. Note
the defaults of package attributes that define Basic ICE functionality.

<element name = "package" type = "icedel:packageType"/>
 <complexType name = "packageType">
<sequence>
 <group ref = "icedel:cm.package"/>
<any namespace = "##other" processContents = "lax"
minOccurs = "0"
 maxOccurs = "unbounded"/>
</sequence>
<attribute name = "package-id" use = "required" type =
"xs:token"/>
<attribute name = "subscription-id" use = "required" type =
"xs:token"/>
<attribute name = "fullupdate" default = "true" type =
"xs:boolean"/>
<attribute name = "confirmation" default = "false" type =
"xs:boolean"/>
<attribute name = "new-state" default = "ICE-ANY"
type = "icesdt:package-sequence-stateType"/>
 <attribute name = "old-state" default = "ICE-ANY"
type = "icesdt:package-sequence-stateType"/>
<anyAttribute namespace = "##other" processContents =
"lax"/>
 </complexType>
</element

ICE: Full ICE Specification

 38

6.1 Package Attributes
There are several attributes on package:

 confirmation
Default. This attribute specifies whether confirmation of receipt is required. The
values are Boolean, “true” or “false.” The default is “false”. Confirmation does not
apply for Basic ICE since Basic ICE does not support subscription management.

 fullupdate
Default. This attribute specifies whether the package contains a full (or partial)
update. The values are Boolean, “true” or “false.” The default is “true” because
Basic ICE does not require management of incremental updates.

 new-state
Default. One of two sequence identifiers, which, together represent the state of the
subscription. Since Basic ICE does not support subscription management, the
default is set to “ICE-ANY”.

 old-state
Default. One of two sequence identifiers, which, together represent the state of the
subscription. Since Basic ICE does not support subscription management, the
default is set to “ICE-ANY”.

 package-id
Required. Identifies the package within the scope of a subscription. It is referenced
in certain ice-code messages such as 201 (Confirmed) and for package
confirmations. The Syndicator assigns the package-id.

 subscription-id
Required. In Basic ICE, the subscription-id is the unique id of the content feed and
is used by all subscribers. The Syndicator assigns the subscription-id.

6.2 Package Elements
The ICE package is made up of 3 elements. See figure 6.2. An ICE <icedel:package
describes a set of content operations: additions, removals, and a group of additions and/or
removals that are used to update/distribute syndicated content. The content additions
contain the content that needs to be added or updated and are specified using the
<icedel:item and <icedel:item-ref elements. The <icedel:group element allows
the Syndicator to associate the content specified using the <icedel:item elements
together. For example, in the syndication of restaurant reviews, each review may consist
of different types of content such as an HTML file and two graphic files. These three files
could be contained within three <icedel:item elements and grouped together in an ICE
<icedel:group as a single restaurant review. Likewise, unrelated content can be
specified in a <icedel:package by just using the add and then <icedel:item
elements without an intervening <icedel:group. The <icedel:item element is used to
contain content directly for delivery. The <icedel:item-ref element is used to

ICE: Full ICE Specification

 39

distribute an indirect reference to the actual content. Note that the #wildcard allows for
insertion of content from any namespace.

Figure 6.2 Package Elements for Full ICE

6.2.1 Group
The <icedel:group is a container element that can be used to group content items being
added or removed. It also enables the attachment of metadata to a group of content items.

Attributes on <icedel:group include:

• name
Optional. This attribute specifies a name for the item group that can be uwsed to
identify that group within a package.

• subscription-element-id
Optional. This attribute specifies the persistent identifier of thegroup of elements
within the subscription

6.2.2 Metadata
The <icedel:metadata element enables the entry of metadata on <icedel:group,
<icedel:add, or <icedel:remove-item by using its attributes and description element.

ICE: Full ICE Specification

 40

Attributes on <icedel:metadata are shown in Figure 6.3.

Figure 6.3 Attributes on Metadata element

• content-filename
Optional. This element enables the specification the file name contained within.

• content-type
Optional. This attribute enables the specification of the type of content such as
“news.”

• atomic-use
Optional. This attribute specifies whether the element may be used in part. The
values are Boolean, “true” or “false.” The default is “false” because Basic ICE
requires complete item usage.

• editable
Optional. This attribute specifies whether the element is editable or whether it
must be used as delivered. The values are Boolean, “true” or “false.” The default
is “false” because Basic ICE requires unaltered item usage.

• ip-status
Optional. This specifies the intellectual property right status. The value is a
token.

• license
Optional. This specifies the license status of the content. The value is a token.

• rights-holder
Optional. This attribute specifies the rights holder. The value is a token

• show-credit
Optional. This attribute specifies the requirement to show credit for the content.
The values are Boolean, “true” or “false.” There is no default.

• item-type
Optional. This attribute specifies a URI that identifies what type of item this is.
For example the value of item-type may be
“http://icestandard.org/ICE/V20/item-type/offer”.

6.2.3 Add
The <icedel:add element is used to add new content according to the delivery policy of
the subscription. It enables the attachment of metadata to the content being added. The

ICE: Full ICE Specification

 41

<icedel:add enables content to be directly included in the message by using the
<icedel:item element, an indirect reference to content using <icedel:item-ref
mechanism.
The structure of <icedel:add is shown in Figure 6.4.

Figure 6.4 Add Element Structure

The <icedel:add element includes the following attributes:
• subscription-element-id

Optional. This attribute specifies the persistent identifier of an element of a
subscription that is being added. This applies to the contained item, item-ref or
syndicator supplied (#wildcard) content.

• is-new
Optional. This attribute specifies that the content is new. The values are Boolean,
“true” or “false.” There is no default.

• activation
Optional. This attribute specifies when the addition for content is activated. The
value is in the icesdt:dateTime format.

• expiration
Optional. This attribute specifies when the content expires. This attribute
specifies when the addition for content is activated. The value is in the
icesdt:dateTime format.

6.2.4 Remove Item
The <icedel:remove-item element is used to remove content of the subscription.
The structure of <icedel:remove-item is shown in Figure 6.5.

Figure 6.5 Remove-item Structure

ICE: Full ICE Specification

 42

The <icedel:remove-item element has a single required attribute that identifies what is to
be removed:

• subscription-element-id
Required. This attribute specifies the persistent identifier of an element of a
subscription

6.2.5 Item
The <icedel:item element directly carries content from the Syndicator to the
Subscriber. An <icedel:item can carry the ICE <icesub:offer. The <icedel:item
does not carry subscription management elements such as <icesub:subscribe or
<icesub:cancel. The <icedel:item structure is shown in Figure 6.6.

Figure 6.6 Item Structure

The <icedel:item has two attributes:
• content-transfer-encoding

Default. This attribute specifies the transfer encoding. Choices are base64 or x-
native-xml with x-native-xml as the default.

• name
Optional. This attribute specifies the item name that can be used as a transient
identifier within a group or add.

6.2.6 Item-Ref
The <icedel:item-ref element references Syndicator content. The <icedel:item-
ref structure is shown in Figure 6.7. It is made up of a single <icedel:reference
element. This means that for each reference, an <item-ref element must be used.

Figure 6.7 Item-ref Structure

The <item-ref element has two attributes:
• retrieve-after

Optional. This attribute specifies a time after which the item can be retrieved. It
is specified in the icesdt:dateTime format.

ICE: Full ICE Specification

 43

• name
Optional. This attribute specifies the item name that can be used as a transient
identifier within a group or add.

6.2.7 Reference
The <icedel:reference element is used to reference the content of the <icedel:item-
ref element. The reference element is empty (with the exception of any wildcard
content). The attributes carry the information for this element.
The <icedel:reference element has four attributes:

• url
Required. This attribute specifies the URL from which the content can be
retrieved.

• username
Optional. This attribute specifies the username for retrieving the content if a
login is required.

• password
Optional. This attribute specifies the password for retrieving the content if a login
is required.

• authentificationscheme
Optional. This attribute specifies the authentification scheme for retrieving the
content if this is required.

6.3 Package Confirmations
Full ICE has a mechanism to confirm the delivery of packages. If the package that is
being delivered has confirmation=”yes” then the Full ICE Subscriber must return a
package confirmations response. The <icedel:package-confirmations element can
contain one or more <icedel:confirmation. See Figure 6.8.

Figure 6.8 Package Confirmations Structure

Each <icedel:confirmation has the following attributes:
• confirmed

Required. This attribute specifies whether the package delivery is confirmed.
The value is Boolean and there is no default.

• package-id
Required. This attribute specifies the unique id of the package within a
subscription for which delivery is confirmed.

• processing-completed
Optional. This attribute specifies whether the package was simply received or

ICE: Full ICE Specification

 44

whether it was processed. Values are “received” and “processed”. There is no
default.

