
1

Information and Content Exchange (ICE)
Application Discussion

An Update of Chapter 24, XML Handbook Version 5

 The role of syndication in today’s e-business environment
 ICE 2.0; modernizing the specification
 ICE with SOAP
 ICE with WSDL
 An ICE-based syndication scenario
 ICE as an open standard

Sponsor: ICE Authoring Group; an IDEAlliance working group
 http://www.icestandard.org, http://www.idealliance.org
Contributing experts; Jay Brodsky, Tribune Media Services; Marco
Carrer, Oracle Corporation; Dianne Kennedy, PublishASAP; Daniel
Koger, independent consultant; Dr. Richard Martin, Active Data
Exchange; and Laird Popkin, independent consultant

2

Information and Content Exchange (ICE)
Automated recurring content flows: technical and marketing information from business partners,
product manuals from your company’s divisions, and publications from a wide variety of media sources
feed the business requirements of Web today. Automating and managing the syndication of content
feeds used to be time-consuming and expensive, but now there’s a cool way to do it!

You may not realize it, but syndication is part of your business even if you have
nothing to do with the media industry. To see why, lets have a brief history
lesson.

1 | Beyond the newswire
Syndication – historically, the delivery of content to multiple subscribers simultaneously – began in the earliest
days of the newspaper business. It was automated by the telegraph, with reporters and local newspapers
transmitting articles to big city newspapers. Syndication drove the growth of a media industry that is now
dominated by giant content providers – the syndicators. They deliver everything from news articles to television
programs, and they deliver them to a legion of newspapers, networks, and TV stations – the subscribers.

The first type of syndication – the newswire – is perhaps the oldest example of an automated supply chain. Unlike
the EDI supply chain, however, which delivers only data about commercial transactions, the newswire delivered
the actual goods – the news articles.

In recent years, the pervasiveness of Internet has led to a redefinition and expansion of the concept of syndication.
As companies rethink the way they do business to maximize their relationships and improve on their individual
and joint performance in the marketplace, they need a new framework to build upon. This new framework needs
to identify the extended relationships, activities, information flows and interdependencies between internal and
external business partners.

Today, syndication means managed content distribution, and it goes far beyond the newswire – extending into the
realm of enabling the business-to-business environment. As business integration becomes commonplace, ordinary
enterprises will increasingly need to syndicate and subscribe to each other’s critical business content such as
supplier catalogs and maintenance manuals – even customer profiles and transaction records!

2 | Emerging online syndication scenarios
Redefinition and expansion of the concept of syndication affects many business sectors. Today, organizations
need to interchange “content” with their vendors, customers, sales force, investors and staff. Some examples,
outside the traditional newswire scenario, where online, automated, managed content interchange makes good
business sense include the following:

2.1 Governmental and regulatory agencies
Governmental and regulatory agencies create and manage a multitude of content including regulatory information
and forms. It is important that these agencies share their content with the public and other agencies as well.
Rather than mail hard copy to a distribution list, automating the delivery of content using online syndication can
not only save money but also improve the timeliness of government information.

3

2.2 Financial and insurance companies
Financial and Insurance companies handle information that is extremely time sensitive and confidential in nature.
Automating the online dissemination of these assets is a critical ingredient of customer service. Online
syndication meets the requirements for these institutions by providing managed content delivery in an online
environment.

2.3 Media companies
Media companies have high-value, frequently changing content from many sources in many formats. Licensing
this content to Intranets and portals provides a new revenue stream for media companies. Online syndication
applications can provide the management and delivery of this high-value information asset.

2.4 Product vendors
If your purchasing department deals with numerous product vendors, syndicating your specifications, drawings,
and project reports to the vendors can ensure that everyone has the most up-to-date project information, no matter
their physical location. Syndication can be used to keep projects on track by strengthening communication
channels.

2.5 Customers
If you are a product or service vendor, the distribution of product specifications, user manuals, and support
information directly to your customers can be quite beneficial. Using syndication, your customers can access
critical information about your products right on their desktops. This eliminates concerns over outdated or
missing documentation while keeping your company in the spotlight.

3 | Business requirements for syndication
Automating the delivery of recurring content to subscribing business partners can be problematic. Adding a new
business partner often requires time-consuming, customized, error-prone, manual processes. The syndicator must
negotiate special requirements with each new subscriber, such as delivery times and frequency, notification,
reporting, and monitoring.

Business requirements that must be addressed in any syndication scenario include:

flexible delivery

To operate properly and scale across a wide range of relationships, content syndication must support
several delivery techniques. Some subscribers can accept delivery of content at any time, others only at
specified times – for instance, off-peak hours. Some subscribers may request specific data at agreed-upon
times; others will be set up to receive “pushed” data asynchronously.

delivery guarantees

Some content items, such as press releases, are withheld until a certain date and should not be accessible
until that date. Also, most content has a shelf life and should be subject to expiration.

time value

Some content has a time value for delivery. For example, investors need to guarantee that their stock
transactions are delivered promptly. ICE enables investors to be advised of transaction receipt through its
robust messaging.

4

4 | ICE: A cool and solid solution!
The requirement for standardizing Internet-based content interchange among business partners is addressed by the
Information and Content Exchange (ICE) Specification. ICE is an XML-based protocol that defines business rules
and specifies processes needed for reliable content syndication among Web servers. A consortium of more than 80
software developers, technology suppliers, content owners, and publishers developed ICE 1.0. A new version of
ICE that is web-services compliant is being released in 2003.

4.1 ICE capabilities
The ICE protocol defines a model for the ongoing management of syndication relationships, including the roles
and responsibilities of syndicators and subscribers. Here are some key capabilities that ICE-based tools can offer:

 With ICE, syndicators can describe business rules, such as usage constraints and intellectual property
rights.

 ICE enables syndicators to create and manage catalogs of subscription offers. These can be accessed by
content type, source, and other criteria.

 ICE uses XML to represent the messages that syndicators and subscribers exchange. The ICE message
structure keeps the content independent of the protocol itself, so virtually any data can be exchanged –
from text to streaming video.

 ICE enables subscribers to specify a variety of “push” or “pull” delivery modes, as well as delivery times
and frequency.

 With ICE, subscribers can specify content update parameters, such as incremental or full updates.

 ICE-based tools allow content to be obtained from and delivered to, a wide variety of content repository
types. These include databases, content management systems, file directories, Web servers, PDAs,
wireless, and Internet appliances.

 ICE 2.0 is designed to be encapsulated within a SOAP message and can therefore be carried over any
transport protocol SOAP supports.

 ICE 2.0 was defined to function a web service. As such, ICE 2.0 will rely on other standards and
specifications such as HTTP, XML and SOAP to provide standardized functionality, while ICE will
define high-level business rules of the web services technology stack.

4.2 The Value Proposition
ICE was designed to solve real business problems. It automates the delivery of content and enables the
specification of delivery rules such as push/pull, delivery targets, full or incremental update mechanisms, and the
scheduling of deliveries. ICE enables the content provider to specify usage constraints, intellectual property
status, reuse constraints, and release/expiration dates. ICE provides full error messaging, logging and notification.

Prior to ICE, traditional online information distribution required custom programming for each content subscriber.
This proved time consuming and expensive for the content providers. It also proved to be unscaleable as
organizations grew.

ICE, on the other hand is a standard. This means that diverse applications that have “ICE inside” can
communicate without requiring custom integration. ICE enables many mechanisms to guard content from
unauthorized use, and to impose business rules that are important to the content provider. The bottom line is that
ICE helps organizations reduce the cost of delivering information to the people who need it.

5 | From ICE 1.0 to ICE 2.0

Since its introduction in 1997, ICE has emerged as the preeminent standard for online distribution of catalogs,
financial data and bulk publisher content. Because ICE 1.0 was developed in the early days of XML, it could only
incorporate those W3C recommendations that existed at that time. By 2001, significant advances had been made

5

in the XML family of standards. The XML Schema Definition Language provided a powerful alternative to XML
DTDs (Document Type Definitions). XML Namespaces provided new mechanisms for modularity and extension
of the specification. Web services such as SOAP (Simple Object Access Protocol) and WSDL (Web Services
Description Language) are emerging as the foundations for the next generation of Internet applications. In
addition, the ICE specification, itself, had been implemented and a great body of experience had been gained as a
result of these implementations. The ICE Authoring Group recognized the need for a major revision to the ICE
specification and embarked on developing ICE 2.0.

5.1 ICE utilization of XML schema

XML Schema Definition Language is a three-part specification from the W3C that provides the capability to
specify and constrain grammers that are consumed by XML applications. XML Schema provides a superset of the
specification capabilities of the XML DTD. XML Schema enables specification of type that is expected in the
web services environment. It is critical that ICE can work over SOAP and function as a web service. SOAP uses
XML Schema for its definition and specifically disallows specification by XML DTDs for interoperability with
SOAP. In addition, ICE functionality requires features such as type definitions found in XML Schemas but not
supported by XML DTDs. ICE 1.0 was specified with an XML DTD. ICE 2.0 is specified with an XML Schema.

5.2 ICE Namespaces

XML namespaces provide a simple method for qualifying element and attribute names used in XML documents
by associating them with namespaces identified by URI references. XML Namespaces enable us to define a set of
unique element names within a given context. Namespaces prevent element collisions and enable computers to
unequivocally determine exact points of reference. Such unique addressing is critical to reliable messaging
between web services. In ICE 2.0, all ICE-defined elements are moved into one of three ICE namespaces to
enable ICE to function as a web service and utilize SOAP messaging.

The ICE 2.0 namespaces include:
 xmlns:icemes = ”http://icestandard.org/ICE/V20/message”
 xmlns:icedel = ”http://icestandard.org/ICE/V20/delivery”
 xmlns:icesub = ”http://icestandard.org/ICE/V20/subscribe”

5.3 Enabling web services

Web services are a new breed of web applications that are self-contained, self-describing, modular applications
that can be published, located, and invoked across the Web. Web services perform functions, which can be
anything from simple requests to complicated business processes such as content syndication.

Web services are reusable software components that are loosely coupled and semantically encapsulate discrete
functionality that performs a single task. Web services are distributed over the Internet and make use of existing,
ubiquitous transport protocols like HTTP. Most importantly for ICE, web services can be accessed
programmatically. Instead of being designed for direct human interaction, ICE will operate at the code level and
can be called by and exchange data with other applications. This is ideal for the automation of syndication.

Web services are not implemented in a monolithic way. Instead, web services represent a minimum connection
between two applications. Basic web-service communication utilizes a remote procedure call (RPC) in which
queries and responses are exchanged in XML over HTTP. Complex web services involve a stack of specific
standards that work together to provide complete functionality. See Figure 1.

6

Figure 1. ICE is at the top of web services technology stack

 Common Internet Protocols. Although not specifically tied to any transport protocol, web services
build on ubiquitous Internet connectivity and infrastructure to ensure nearly universal reach and
support. In particular, web services will take advantage of HTTP, the same connection protocol used
by web servers and browsers.

 Extensible Markup Language (XML). XML is a widely accepted format for exchanging data and its
corresponding semantics. It is a fundamental building block for nearly every other layer in the web
services stack.

 Simple Object Access Protocol (SOAP). SOAP is a protocol for messaging and RPC-style
communication between applications. It is based on XML and uses common Internet transport
protocols like HTTP to carry its data. SOAP was been submitted to the World Wide Web
Consortium (W3C) standards body and became a Candidate Recommendation in January 2003.

Higher-Level Layers of the Web Services Stack

 Web Services Description Language (WSDL). WSDL is an XML-based description of how to
connect to a particular web service. A WSDL description abstracts a particular service's various
connection and messaging protocols into a high-level bundle and forms a key element of the UDDI
directory's "green pages." WSDL was submitted theW3C, and the Working Draft for WSDL
Version 1.2 Requirements was posted on January 24, 2003.

 Universal Description, Discovery, and Integration (UDDI). UDDI represents a set of protocols and a
public directory for the registration and real-time lookup of web services and other business
processes. UDDI's sponsors, chiefly IBM and Microsoft, officially released the first public version
of UDDI in May 2001. In July 2002, UDDI work transitioned to the OASIS Standards Consortium.
Version 3.0 of the UDDI was recently posted by OASIS.

 Other Business Rules. Additional elements that support complex business rules must still be
implemented before web services can automate truly critical business processes. This is where ICE
2.0 fits.

Note: Online syndication with ICE 1.0 was considered to be a "web service" (in
general terms) in that it provided the automated delivery of a content stream over the
Internet. However ICE 1.0 was not “spelled like” a true web service. It could not
benefit from standards such as SOAP and WSDL that support true web services today.
ICE 2.0, however, has been significantly redefined using web-services standards that
exist today to provide for syndication a true web service.

7

6 | More about ICE
So what does the new ICE 2.0 schema define? What are the ICE elements and attributes. And how does ICE
work with the web services technology stack?

6.1 ICE simple datatypes

ICE simple datatypes are defined in an ICE simple datatypes schema found at
http://www.icestandard.org/ICE/2002/simpledatatypes.xsd. Datatypes for elements and attributes within ICE are
specified here. The following shows an example of the datatype definitions for “dateTime” and “time”. Note that
each simple datatype is documented to explain the intended usage.
<xs:simpleType name = "dateTime">
 <xs:annotation>
 <xs:documentation>the pattern here expresses the restriction that
datetimes in ICE must be in the UTC time zone</xs:documentation>
 </xs:annotation>
 <xs:restriction base = "dateTime">
 <xs:pattern value = ".*Z"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name = "time">
 <xs:annotation>
 <xs:documentation>the pattern here expresses the restriction that
times in ICE must be in the UTC time zone</xs:documentation>
 </xs:annotation>
 <xs:restriction base = "time">
 <xs:pattern value = ".*Z"/>
 </xs:restriction>
 </xs:simpleType>

6.2 ICE message XSD
The ICE message schema is defined within http://www.icestandard.org/ICE/Spec/V20/schema/message.xsd as the
“icemes” namespace. This schema defines structures relating to the ICE message itself. This includes message
header information and ICE faults. In ICE 1.0, before SOAP, ICE had its own envelope and the ICE message
header fell within the ICE envelope. Today, however, ICE uses the SOAP envelope and SOAP header. The ICE
message is carried within the SOAP header.

The ICE message contains header information that is specific to syndication. See Figure 2.

8

Figure 2. The ICE message header

Note that the ICE message uses the simple datatypes defined within the simple datatype module. For example, the
timestamp uses the “dateTime” datatype that was discussed previously.

6.3 ICE delivery XSD
ICE delivery is defined in a schema module with http://www.icestandard.org/ICE/Spec/V20/schema/delivery.xsd
as the “icedel” namespace. This module defines the elements that support the delivery of syndicated content and
is carried within the SOAP body. See Figure 3.

Figure 3. ICE delivery elements

ICE delivery is most often made up of packages. Packages may directly contain content from another XML
namespace, indicated by #wildcard or packages. Two kinds of ICE packages include those bearing or pointing to

9

content and those containing a catalog of subscription offers. ICE delivery also provides for the “get-packages”
request and a “package-confirmations” function.

6.4 ICE subscription XSD
The ICE subscription module is used to establish and cancel subscriptions for syndicated content. It is defined
within http://www.icestandard.org/ICE/Spec/V20/schema/subscribe.xsd as the “icesub” namespace. See Figure
4.

Figure 4. ICE Subscription

Each ICE subscription contains one offer that will be subscribed to. Attributes on the offer identify it uniquely
and may provide a “get-package-url” where the content can be accessed. Each ICE subscription offer must
contain a delivery policy. The delivery policy rule defines how and when content will be delivered. See Figure 5.

10

Figure 5. ICE delivery-rule of the ICE delivery-policy

In addition, the ICE subscription allows for the subscriber to cancel a subscription, for the syndicator to verify
cancellation and for the subscriber to get the status of a subscription. See Figure 6.

Figure 6. Cancellation functions of ICE subscriptions

6.5 ICE with SOAP
ICE 2.0 was specifically designed to function as a web service and to take advantage of SOAP as a messaging
protocol. The ICE message was designed to be carried in the SOAP header and the ICE delivery and subscription
mechanisms were designed to be enclosed in the SOAP body.

To understand how ICE works with SOAP, see Figure 7.

11

Figure 7. ICE is carried by SOAP

6.6 ICE with WSDL
In order for ICE to function as a web service, another ingredient is critical. This is WSDL. This language enables
us to specify the following things:

 The exchange method (response/request, solicit/response, etc.)

 The input and output message types

 The endpoint of the service (location)

 The message schema

 Fault information

ICE 2.0 defines two WSDL scripts. One specifies the Full ICE syndicator. A second defines the Full ICE
subscriber.

6.6.2 The Full ICE Syndicator WSDL
Here are portions of the WSDL script defining messages and bindings for Full ICE Syndicator functionality:
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="ice-syndicator-full"
targetNamespace="http://icestandard.org/ICE/V20/syndicator/full"
xmlns:tns="http://icestandard.org/ICE/V20/syndicator/full"
xmlns:icemsg="http://icestandard.org/ICE/V20/message"
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
xmlns:icedel="http://icestandard.org/ICE/V20/delivery"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!--

12

 | Import schema definitions
 -->
 <import namespace="http://icestandard.org/ICE/V20/message"
 location="http://www.idealliance.org/ICE/ice-message.xsd"/>

 <import namespace="http://icestandard.org/ICE/V20/delivery"
 location="http://www.idealliance.org/ICE/ice-delivery.xsd"/>

 <import namespace="http://icestandard.org/ICE/V20/subscribe"
 location="http://www.idealliance.org/ICE/ice-subscribe.xsd"/>
<!-- subscribe messages -->
 <message name="subscribe">
 <part name="subscribeReq" element="icesub:offer"/>
 </message>
 <message name="subscription">
 <part name="subscriptionResp" element="icesub:subscription"/>
 </message>

<!-- get-package messages -->
 <message name="get-package">
 <part name="getPackageReq" element="icedel:get-package"/>
 </message>
 <message name="package">
 <part name="packageResp" element="icedel:package"/>
 </message>

<!-- portType definition -->
 <portType name="ice-syndicator-full-portType">
 <operation name="subscribe">
 <input message="tns:subscribe" name="subscribe"/>
 <output message="tns:subscription" name="subscription"/>
 <fault message="tns:subscription-fault" name="subscription-fault"/>
 </operation>

 <operation name="get-package">
 <input message="tns:get-package" name="get-package"/>
 <output message="tns:package" name="package"/>
 <fault message="tns:status-code" name="status-code"/>
 </operation>
 </portType>

<!--
 SOAP Binding
 -->
 <binding name="ice-syndicator-full-binding"
 type="tns:ice-syndicator-full-portType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

<!--
 subscribe
 -->
 <operation name="subscribe">
 <soap:operation/>
 <input name="subscribe">
 <soap:body use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 <soap:header message="header" part="header" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 </input>

13

 <output name="subscription">
 <soap:body use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 <soap:header message="header" part="header" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 <soap:headerfault message="fault" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 </output>
 <fault name="subscription-fault">
 <soap:fault name="subscription-fault" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 </fault>
 </operation>

<!--
 get-package
 -->
 <operation name="get-package">
 <soap:operation/>
 <input name="get-package">
 <soap:body use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 <soap:header message="header" part="header" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 </input>
 <output name="package">
 <soap:body use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 <soap:header message="header" part="header" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 <soap:headerfault message="fault" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 </output>
 <fault name="status-code">
 <soap:fault name="status-code" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 </fault>
 </operation>

 </binding>

 <!-- Sample Service -->
 <service name="your-ice-syndicator-full">
 <port name="ice-syndicator-full-portType" binding="tns:ice-syndicator-
full-binding">
 <soap:address location="http://your-ice-server.com/soap-ice"/>
 </port>
 </service>
</definitions>

6.6.3 The Full ICE Subscriber WSDL
Here is the WSDL script defining messages and bindings for ICE Subscriber functionality:
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="ice-subscriber"
 targetNamespace="http://icestandard.org/ICE/V20/wsdl/subscriber"
 xmlns:tns="http://icestandard.org/ICE/V20/wsdl/subscriber"
 xmlns:icemsg="http://icestandard.org/ICE/V20/message"
 xmlns:icedel="http://icestandard.org/ICE/V20/delivery"
 xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

14

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- import schema definition -->
 <import namespace="http://icestandard.org/ICE/V20/message"
 location="http://www.idealliance.org/ICE/ice-message.xsd"/>

 <import namespace="http://icestandard.org/ICE/V20/delivery"
 location="http://www.idealliance.org/ICE/ice-delivery.xsd"/>

 <import namespace="http://icestandard.org/ICE/V20/subscribe"
 location="http://www.idealliance.org/ICE/ice-subscribe.xsd"/>

 <!-- subscribe messages -->
 <message name="subscribe">
 <part name="subscribeReq" element="icesub:offer"/>
 </message>

<message name="subscription">
 <part name="subscriptionResp" element="icesub:subscription"/>
 </message>

<!-- get-package messages -->
 <message name="get-package">
 <part name="getPackageReq" element="icedel:get-package"/>
 </message>

 <message name="package">
 <part name="packageResp" element="icedel:package"/>
 </message>

 <!-- portType definition -->
 <portType name="ice-subscriber-portType">
<!-- Subscriber input/output operations -->

 <operation name="subscription">
 <input message="tns:subscription" name="subscription"/>
 <output message="tns:ok" name="ok"/>
 <fault message="tns:status-code" name="status-code"/>
 </operation>

 <operation name="package">
 <input message="tns:package" name="package"/>
 <output message="tns:package-confirmations"
 name="package-confirmations"/>
 <fault message="tns:status-code" name="status-code"/>
 </operation>
</portType>

<!--
 SOAP Binding
 -->
 <binding name="ice-subscriber-binding" type="tns:ice-subscriber-portType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<!-- subscription -->
 <operation name="subscription">
 <soap:operation/>
 <input name="subscription">

15

 <soap:body use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 <soap:header message="header" part="header" use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 </input>
 <output name="ok">
 <soap:body use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 <soap:header message="header" part="header" use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 <soap:headerfault message="fault" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 </output>
 <fault name="status-code">
 <soap:fault name="status-code" use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 </fault>
 </operation>

 <operation name="package">
 <soap:operation/>
 <input name="package">
 <soap:body use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 <soap:header message="header" part="header" use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 </input>
 <output name="package-confirmations">
 <soap:body use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 <soap:header message="header" part="header" use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 <soap:headerfault message="fault" use="literal"
 namespace="http://icestandard.org/ICE/V20/syndicator/full"/>
 </output>
 <fault name="status-code">
 <soap:fault name="status-code " use="literal"
 namespace="http://icestandard.org/ICE/V20/wsdl/subscriber"/>
 </fault>
 </operation>
</binding>

 <!-- Sample Service -->
 <service name="your-ice-subscriber">
 <port name="ice-subscriber-portType" binding="tns:ice-subscriber-
binding">
 <soap:address location="http://your-ice-server.com/soap-ice"/>
 </port>
 </service>
</definitions>

7 | ICE Modules
One of the early design goals for ICE 2.0 was the requirement to provide modularity for ICE. Modularity will, in
effect, enable users of the ICE specification to select certain modules for implementation and leave others
unimplemented. Modularity will also enable ICE to interoperate with other specifications, such as SOAP and
Web services specifications, in a seamless fashion.

16

The ICE modules correspond to features of ICE for each level of conformance. See Figure 8.

Figure 8. The modules of ICE may be implemented individually

8 | Levels of conformance
ICE 2.0 defines three levels of conformance. These levels of conformance spell out the features of ICE that must
be supported for that level of conformance. The definition of levels of conformance enables software vendors to
develop ICE applications that are interoperable.

 Basic ICE software can be expected to interoperate with other software that supports Basic ICE.

 Full ICE software can be expected to interoperate with other software that supports Full ICE.

8.1 Basic ICE Features
The Basic ICE level of conformance provides for very simple syndication functionality. In fact, all that Basic ICE
enables is for the Syndicator to post messages to a URL where the Subscriber can “get” them.

 <package> (this is limited to a single package by WSDL, even though the ICE-delivery schema allows for
multiple packages to be delivered in a single message)

 <fault>

Basic ICE does not allow for subscription management capabilities. The binding for Basic ICE is limited to a
simple http:get. Refer to Figure 8 to see Basic ICE features/modules.

8.2 Full ICE Features
A Full ICE implementation implements all the features of the ICE 2.0 specification. Full ICE implementations
must support SOAP transport bindings and adds messages to support subscription management. Additional
messages include:

 <subscription>

 <cancellation>

 <status>

Refer to Figure 8 to see Full ICE features/modules

17

8.3 Optional ICE Features
The ICE 2.0 Specification defines only those modules which are required to support Full ICE. However there are
a number of syndication features that can be added to feature set of Full ICE to provide advanced functionality.
Examples of such features are automated subscription negotiation and logging. ICE was carefully designed to
allow for extensions either defined in newer versions of ICE or by individual ICE implementors. If extensions are
used to enhance the syndication functionality provided by Full ICE, the level of ICE conformance is termed
Optional ICE.

9 | A simple ICE scenario
Let’s look at a step-by-step example of a simple transaction between a syndicator and a subscriber in a familiar
industry. The syndicator, the Best Code Company, a software developer, sets up and delivers a subscription to
Tech News, a trade journal for the high technology industry. See Figure 9.

9.1 Syndicator and subscriber set up a business agreement
Syndication relationships begin with a business agreement. Best Code and Tech News agree on such terms as
payment issues, usage rights, and subscription lifetime. The business agreement negotiation happens outside ICE
and can involve person-to-person discussion, legal review, and contracts.

9.2 Syndicator and subscriber set up a subscription
Once the business agreement is in place, ICE comes into play as Best Code and Tech News start exchanging ICE
messages to establish a subscription and begin content delivery.

9.2.1 Subscriber recieves a package of subscription offers
In order to view a catalog of subscription offers, Tech News goes to the website of Best Code where a package of
offers . The Subscriber may also use the discovery mechanism of Universal Description, Discovery, and
Integration (UDDI) to find a catalog of subscription offers. UDDI represents a set of protocols and a public
directory for the registration and real-time lookup of web services. Or the Subscriber may request a package of
subscription offers using <get-package>. By convention, a package with the subscription-id=”1” is
known to be the package containing a catalog of subscription offers.

9.2.2 Subscriber sends a request to subscribe to the offer
Tech News thinks the press releases are exciting stuff and promptly asks to sign up for the subscription offer. It
agrees to pull the content from Best Code’s site and with minimum-update-interval="P300S".

9.2.3 Syndicator accepts request and responds with subscription
Best Code indicates that a subscription has been established by enclosing the agreed-upon offer within a
subscription element in its next message. Best Code gives Tech News an ID number of “X” for the subscription
and also confirms the delivery method and “pull” time in the ICE message.

18

Figure 9. A simple ICE scenario involves messaging between a syndicator and a subscriber

9.3 Subscriber receives content
Once the subscription is set up, Tech News is ready to receive content. Tech News starts by asking for new
content. Best Code responds with a message describing the changes to the content in the subscription. These
changes can include new content and can also include requests to delete existing content. In this way, Best Code
can control the precise content for that subscription on the Tech News site. Together with the actual content, the
messages may also specify other subscription parameters such as effective date and expiration date.

9.3.1 Subscriber requests initial subscription content
Tech News uses <get-package> to ask for subscription content. The current-state="1" indicates that
this is an initial request for this subscription, which alerts Best Code to download the full content.

9.3.2 Syndicator then responds with full content of subscription
Now Best Code delivers the content of its subscription, consisting of an ICE package with two press releases. The
first release is part of the package– the content of an ICE item element. The second release, however, is not
actually in the package. Instead, its location is given in the url attribute of an ICE <item-ref> element. This
serves as a pointer to the content and is an alternative to sending the content within the ICE message.

The ICE package element also conveys other information. The editable="true" gives Tech News
permission to edit the content, while new-state="2" establishes the state of the subscription. The next time

Tech News requests content, it will receive only content added or changed since this delivery, instead of receiving
the entire content load all over again.

19

Tip This example shows a full ICE transaction in a single industry. The protocol is
industry-neutral and is capable of far more complex negotiations, as you can learn by
visiting http://www.icestandard.org/. The site includes information on available
implementations and content syndicators who use ICE.

10 | ICE is an open standard
When selecting a standard upon which to base a product or service, it is critical that the standard is an open
standard. By open, we mean that anyone can contribute to the development of the specification and that the
specification is open to public comment. The ICE specification was originally developed by over 80 publishing
companies and software vendors. Today, ICE work can be tracked in the following ways:

 Join ICE-dev@yahoogroups.com to comment on the specification and join open discussions to resolve
specification issues

 Join the ICE Authoring Group (hosted by IDEAlliance) to directly shape the specification

 Track the progress of the specification and read meeting notes on the ICE WIKI (link from
www.icestandard.org)

 Read the ICE Network News at www.icestandard.org

Another characteristic of an open specification is the development of open source implementations. Currently
there are three open source implementations of ICE that are available at http://www.SourceForge.net:

 ICEcubes is a java implementation of ICE 1.1 that was sponsored by Adobe Systems

 rICE is a Ruby implementation of ICE 1.1 developed by Jim Menard

 twICE is a second java implementation of ICE 1.1, also developed by Jim Menard

These implementations not only help explain the concepts and application of ICE, but are available for anyone to
use and further develop into their own application of ICE.

